The spectral method and ergodic theorems for general Markov chains
Izvestiya. Mathematics , Tome 79 (2015) no. 2, pp. 311-345

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the ergodic properties of Markov chains with an arbitrary state space and prove a geometric ergodic theorem. The method of the proof is new: it may be described as an operator method. Our main result is an ergodic theorem for Harris–Markov chains in the case when the return time to some fixed set has finite expectation. Our conditions for the transition function are more general than those used by Athreya–Ney and Nummelin. Unlike them, we impose restrictions not on the original transition function but on the transition function of an embedded Markov chain constructed from the return times to the fixed set mentioned above. The proof uses the spectral theory of linear operators on a Banach space.
Keywords: embedded Markov chain, uniform ergodicity, resolvent, spectral method, stationary distribution.
@article{IM2_2015_79_2_a4,
     author = {S. V. Nagaev},
     title = {The spectral method and ergodic theorems for general {Markov} chains},
     journal = {Izvestiya. Mathematics },
     pages = {311--345},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a4/}
}
TY  - JOUR
AU  - S. V. Nagaev
TI  - The spectral method and ergodic theorems for general Markov chains
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 311
EP  - 345
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a4/
LA  - en
ID  - IM2_2015_79_2_a4
ER  - 
%0 Journal Article
%A S. V. Nagaev
%T The spectral method and ergodic theorems for general Markov chains
%J Izvestiya. Mathematics 
%D 2015
%P 311-345
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a4/
%G en
%F IM2_2015_79_2_a4
S. V. Nagaev. The spectral method and ergodic theorems for general Markov chains. Izvestiya. Mathematics , Tome 79 (2015) no. 2, pp. 311-345. http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a4/