Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2015_79_2_a0, author = {A. G. Baskakov and A. Yu. Duplishcheva}, title = {Difference operators and operator-valued matrices of the second order}, journal = {Izvestiya. Mathematics }, pages = {217--232}, publisher = {mathdoc}, volume = {79}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a0/} }
TY - JOUR AU - A. G. Baskakov AU - A. Yu. Duplishcheva TI - Difference operators and operator-valued matrices of the second order JO - Izvestiya. Mathematics PY - 2015 SP - 217 EP - 232 VL - 79 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a0/ LA - en ID - IM2_2015_79_2_a0 ER -
A. G. Baskakov; A. Yu. Duplishcheva. Difference operators and operator-valued matrices of the second order. Izvestiya. Mathematics , Tome 79 (2015) no. 2, pp. 217-232. http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a0/
[1] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math., 840, Springer-Verlag, Berlin–New York, 1981, iv+348 pp. | MR | MR | Zbl | Zbl
[2] M. I. Gil', Difference equations in normed spaces. Stability and oscillations, North-Holland Math. Stud., 206, Elsevier Science B.V., Amsterdam, 2007, xvi+362 pp. | MR | Zbl
[3] A. Antonevich, A. Lebedev, Functional-differential equations. I. $C^*$-theory, Pitman Monogr. Surveys Pure Appl. Math., 70, Longman Scientific Technical, Harlow, 1994, viii+504 pp. | MR | Zbl
[4] Linear functional equations. Operator approach, Oper. Theory Adv. Appl., 83, Birkhäuser Verlag, Basel, 1996, viii+179 pp. | DOI | MR | MR | Zbl | Zbl
[5] A. G. Baskakov, “Semigroups of difference operators in spectral analysis of linear differential operators”, Funct. Anal. Appl., 30:3 (1996), 149–157 | DOI | DOI | MR | Zbl
[6] A. G. Baskakov, “Invertibility and the Fredholm property of difference operators”, Math. Notes, 67:6 (2000), 690–698 | DOI | DOI | MR | Zbl
[7] A. G. Baskakov, A. I. Pastukhov, “Spectral analysis of a weighted shift operator with unbounded operator coefficients”, Siberian Math. J., 42:6 (2001), 1026–1036 | DOI | MR | Zbl
[8] A. G. Baskakov, “Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations”, Russian Math. Surveys, 68:1 (2013), 69–116 | DOI | DOI | MR | Zbl
[9] M. S. Bichegkuev, “On the spectrum of difference and differential operators in weighted spaces”, Funct. Anal. Appl., 44:1 (2010), 65–68 | DOI | DOI | MR | Zbl
[10] M. S. Bichegkuev, “Spectral analysis of difference and differential operators in weighted spaces”, Sb. Math., 204:11 (2013), 1549–1564 | DOI | DOI | MR | Zbl
[11] A. G. Baskakov, “Spectral analysis of differential operators with unbounded operator-valued coefficients, difference relations and semigroups of difference relations”, Izv. Math., 73:2 (2009), 215–278 | DOI | DOI | MR | Zbl
[12] V. B. Didenko, “On the spectral properties of differential operators with unbounded operator coefficients determined by a linear relation”, Math. Notes, 89:2 (2011), 224–237 | DOI | DOI | MR | Zbl
[13] V. B. Didenko, “On the continuous invertibility and the Fredholm property of differential operators with multi-valued impulse effects”, Izv. Math., 77:1 (2013), 3–19 | DOI | DOI | MR | Zbl
[14] A. G. Baskakov, “Linear differential operators with unbounded operator coefficients and semigroups of bounded operators”, Math. Notes, 59:6 (1996), 586–593 | DOI | DOI | MR | Zbl
[15] A. G. Baskakov, “On correct linear differential operators”, Sb. Math., 190:3 (1999), 323–348 | DOI | DOI | MR | Zbl
[16] A. G. Baskakov, “Harmonic and spectal analysis of power bounded operators and bounded semigroups of operators on Banach spaces”, Math. Notes, 97:2 (2015), 12–26
[17] N. Dunford, J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | MR | Zbl
[18] W. Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., 1973, xiii+397 pp. | MR | MR | Zbl
[19] A. G. Baskakov, K. I. Chernyshov, “Spectral analysis of linear relations and degenerate operator semigroups”, Sb. Math., 193:11 (2002), 1573–1610 | DOI | DOI | MR | Zbl
[20] A. G. Baskakov, “Linear relations as generators of semigroups of operators”, Math. Notes, 84:2 (2008), 166–183 | DOI | DOI | MR | Zbl
[21] A. G. Baskakov, A. S. Zagorskii, “Spectral theory of linear relations on real Banach spaces”, Math. Notes, 81:1 (2007), 15–27 | DOI | DOI | MR | Zbl