Difference operators and operator-valued matrices of the second order
Izvestiya. Mathematics , Tome 79 (2015) no. 2, pp. 217-232.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study linear difference operators (equations) of the second order. We give conditions under which they are invertible or Fredholm and obtain asymptotic representations for solutions of homogeneous difference equations. Our main results are obtained by assigning an operator-valued matrix of the second order to the given operator and then using the theory of difference operators of the first order determined by these matrices.
Keywords: linear difference operator, invertible operator, spectrum of an operator, exponential dichotomy, invertibility state of a linear operator, asymptotic behaviour of solutions.
@article{IM2_2015_79_2_a0,
     author = {A. G. Baskakov and A. Yu. Duplishcheva},
     title = {Difference operators and operator-valued matrices of the second order},
     journal = {Izvestiya. Mathematics },
     pages = {217--232},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a0/}
}
TY  - JOUR
AU  - A. G. Baskakov
AU  - A. Yu. Duplishcheva
TI  - Difference operators and operator-valued matrices of the second order
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 217
EP  - 232
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a0/
LA  - en
ID  - IM2_2015_79_2_a0
ER  - 
%0 Journal Article
%A A. G. Baskakov
%A A. Yu. Duplishcheva
%T Difference operators and operator-valued matrices of the second order
%J Izvestiya. Mathematics 
%D 2015
%P 217-232
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a0/
%G en
%F IM2_2015_79_2_a0
A. G. Baskakov; A. Yu. Duplishcheva. Difference operators and operator-valued matrices of the second order. Izvestiya. Mathematics , Tome 79 (2015) no. 2, pp. 217-232. http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a0/

[1] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math., 840, Springer-Verlag, Berlin–New York, 1981, iv+348 pp. | MR | MR | Zbl | Zbl

[2] M. I. Gil', Difference equations in normed spaces. Stability and oscillations, North-Holland Math. Stud., 206, Elsevier Science B.V., Amsterdam, 2007, xvi+362 pp. | MR | Zbl

[3] A. Antonevich, A. Lebedev, Functional-differential equations. I. $C^*$-theory, Pitman Monogr. Surveys Pure Appl. Math., 70, Longman Scientific Technical, Harlow, 1994, viii+504 pp. | MR | Zbl

[4] Linear functional equations. Operator approach, Oper. Theory Adv. Appl., 83, Birkhäuser Verlag, Basel, 1996, viii+179 pp. | DOI | MR | MR | Zbl | Zbl

[5] A. G. Baskakov, “Semigroups of difference operators in spectral analysis of linear differential operators”, Funct. Anal. Appl., 30:3 (1996), 149–157 | DOI | DOI | MR | Zbl

[6] A. G. Baskakov, “Invertibility and the Fredholm property of difference operators”, Math. Notes, 67:6 (2000), 690–698 | DOI | DOI | MR | Zbl

[7] A. G. Baskakov, A. I. Pastukhov, “Spectral analysis of a weighted shift operator with unbounded operator coefficients”, Siberian Math. J., 42:6 (2001), 1026–1036 | DOI | MR | Zbl

[8] A. G. Baskakov, “Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations”, Russian Math. Surveys, 68:1 (2013), 69–116 | DOI | DOI | MR | Zbl

[9] M. S. Bichegkuev, “On the spectrum of difference and differential operators in weighted spaces”, Funct. Anal. Appl., 44:1 (2010), 65–68 | DOI | DOI | MR | Zbl

[10] M. S. Bichegkuev, “Spectral analysis of difference and differential operators in weighted spaces”, Sb. Math., 204:11 (2013), 1549–1564 | DOI | DOI | MR | Zbl

[11] A. G. Baskakov, “Spectral analysis of differential operators with unbounded operator-valued coefficients, difference relations and semigroups of difference relations”, Izv. Math., 73:2 (2009), 215–278 | DOI | DOI | MR | Zbl

[12] V. B. Didenko, “On the spectral properties of differential operators with unbounded operator coefficients determined by a linear relation”, Math. Notes, 89:2 (2011), 224–237 | DOI | DOI | MR | Zbl

[13] V. B. Didenko, “On the continuous invertibility and the Fredholm property of differential operators with multi-valued impulse effects”, Izv. Math., 77:1 (2013), 3–19 | DOI | DOI | MR | Zbl

[14] A. G. Baskakov, “Linear differential operators with unbounded operator coefficients and semigroups of bounded operators”, Math. Notes, 59:6 (1996), 586–593 | DOI | DOI | MR | Zbl

[15] A. G. Baskakov, “On correct linear differential operators”, Sb. Math., 190:3 (1999), 323–348 | DOI | DOI | MR | Zbl

[16] A. G. Baskakov, “Harmonic and spectal analysis of power bounded operators and bounded semigroups of operators on Banach spaces”, Math. Notes, 97:2 (2015), 12–26

[17] N. Dunford, J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | MR | Zbl

[18] W. Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., 1973, xiii+397 pp. | MR | MR | Zbl

[19] A. G. Baskakov, K. I. Chernyshov, “Spectral analysis of linear relations and degenerate operator semigroups”, Sb. Math., 193:11 (2002), 1573–1610 | DOI | DOI | MR | Zbl

[20] A. G. Baskakov, “Linear relations as generators of semigroups of operators”, Math. Notes, 84:2 (2008), 166–183 | DOI | DOI | MR | Zbl

[21] A. G. Baskakov, A. S. Zagorskii, “Spectral theory of linear relations on real Banach spaces”, Math. Notes, 81:1 (2007), 15–27 | DOI | DOI | MR | Zbl