On the standard conjecture and the existence of a~Chow--Lefschetz decomposition for complex projective varieties
Izvestiya. Mathematics , Tome 79 (2015) no. 1, pp. 177-207

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the Grothendieck standard conjecture $B(X)$ of Lefschetz type on the algebraicity of the operators $*$ and $\Lambda$ of Hodge theory for a smooth complex projective variety $X$ if at least one of the following conditions holds: $X$ is a compactification of the Néron minimal model of an Abelian scheme of relative dimension $3$ over an affine curve, and the generic scheme fibre of the Abelian scheme has reductions of multiplicative type at all infinite places; $X$ is an irreducible holomorphic symplectic (hyperkähler) 4-dimensional variety that coincides with the Altman–Kleiman compactification of the relative Jacobian variety of a family $\mathcal C\to\mathbb P^2$ of hyperelliptic curves of genus 2 with weak degenerations, and the canonical projection $X\to\mathbb P^2$ is a Lagrangian fibration. We also show that a Chow–Lefschetz decomposition exists for every smooth projective 3-dimensional variety $X$ which has the structure of a 1-parameter non-isotrivial family of K3-surfaces (with degenerations) or a family of regular surfaces of arbitrary Kodaira dimension $\varkappa$ with strong degenerations.
Keywords: Néron minimal model, reduction of multiplicative type, K3-surface, hyperkähler variety
Mots-clés : standard conjecture of Lefschetz type, Chow–Lefschetz decomposition, Abel–Jacobi map.
@article{IM2_2015_79_1_a7,
     author = {S. G. Tankeev},
     title = {On the standard conjecture and the existence of {a~Chow--Lefschetz} decomposition for complex projective varieties},
     journal = {Izvestiya. Mathematics },
     pages = {177--207},
     publisher = {mathdoc},
     volume = {79},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a7/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On the standard conjecture and the existence of a~Chow--Lefschetz decomposition for complex projective varieties
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 177
EP  - 207
VL  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a7/
LA  - en
ID  - IM2_2015_79_1_a7
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On the standard conjecture and the existence of a~Chow--Lefschetz decomposition for complex projective varieties
%J Izvestiya. Mathematics 
%D 2015
%P 177-207
%V 79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a7/
%G en
%F IM2_2015_79_1_a7
S. G. Tankeev. On the standard conjecture and the existence of a~Chow--Lefschetz decomposition for complex projective varieties. Izvestiya. Mathematics , Tome 79 (2015) no. 1, pp. 177-207. http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a7/