On the standard conjecture and the existence of a~Chow--Lefschetz decomposition for complex projective varieties
Izvestiya. Mathematics , Tome 79 (2015) no. 1, pp. 177-207
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the Grothendieck standard conjecture
$B(X)$ of Lefschetz type on the algebraicity of the
operators $*$ and $\Lambda$ of Hodge theory for
a smooth complex projective variety $X$ if at least
one of the following conditions holds:
$X$ is a compactification of the Néron minimal model
of an Abelian scheme of relative dimension $3$ over an
affine curve, and the generic scheme fibre of the Abelian
scheme has reductions of multiplicative type at all
infinite places; $X$ is an irreducible holomorphic
symplectic (hyperkähler) 4-dimensional variety
that coincides with the Altman–Kleiman compactification
of the relative Jacobian variety of a family
$\mathcal C\to\mathbb P^2$ of hyperelliptic curves
of genus 2 with weak degenerations, and the
canonical projection $X\to\mathbb P^2$ is a Lagrangian
fibration. We also show that a Chow–Lefschetz decomposition
exists for every smooth projective 3-dimensional variety $X$ which
has the structure of a 1-parameter non-isotrivial family
of K3-surfaces (with degenerations) or a family
of regular surfaces of arbitrary Kodaira
dimension $\varkappa$ with strong degenerations.
Keywords:
Néron minimal model,
reduction of multiplicative type, K3-surface,
hyperkähler variety
Mots-clés : standard conjecture of Lefschetz type, Chow–Lefschetz decomposition, Abel–Jacobi map.
Mots-clés : standard conjecture of Lefschetz type, Chow–Lefschetz decomposition, Abel–Jacobi map.
@article{IM2_2015_79_1_a7,
author = {S. G. Tankeev},
title = {On the standard conjecture and the existence of {a~Chow--Lefschetz} decomposition for complex projective varieties},
journal = {Izvestiya. Mathematics },
pages = {177--207},
publisher = {mathdoc},
volume = {79},
number = {1},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a7/}
}
TY - JOUR AU - S. G. Tankeev TI - On the standard conjecture and the existence of a~Chow--Lefschetz decomposition for complex projective varieties JO - Izvestiya. Mathematics PY - 2015 SP - 177 EP - 207 VL - 79 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a7/ LA - en ID - IM2_2015_79_1_a7 ER -
S. G. Tankeev. On the standard conjecture and the existence of a~Chow--Lefschetz decomposition for complex projective varieties. Izvestiya. Mathematics , Tome 79 (2015) no. 1, pp. 177-207. http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a7/