Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2015_79_1_a6, author = {S. F. Lukomskii}, title = {Riesz multiresolution analysis on zero-dimensional groups}, journal = {Izvestiya. Mathematics }, pages = {145--176}, publisher = {mathdoc}, volume = {79}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a6/} }
S. F. Lukomskii. Riesz multiresolution analysis on zero-dimensional groups. Izvestiya. Mathematics , Tome 79 (2015) no. 1, pp. 145-176. http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a6/
[1] W. C. Lang, “Orthogonal wavelets on the Cantor dyadic group”, SIAM J. Math. Anal., 27:1 (1996), 305–312 | DOI | MR | Zbl
[2] W. C. Lang, “Wavelet analysis on the Cantor dyadic group”, Houston J. Math., 24:3 (1998), 533–544 | MR | Zbl
[3] W. C. Lang, “Fractal multiwavelets related to the Cantor dyadic group”, Internat. J. Math. Math. Sci., 21:2 (1998), 307–314 | DOI | MR | Zbl
[4] S. V. Kozyrev, “Wavelet theory as $p$-adic spectral analysis”, Izv. Math., 66:2 (2002), 367–376 | DOI | DOI | MR | Zbl
[5] S. V. Kozyrev, “$p$-adic pseudodifferential operators and $p$-adic wavelets”, Theoret. and Math. Phys., 138:3 (2004), 322–332 | DOI | DOI | MR | Zbl
[6] V. Yu. Protasov, Yu. A. Farkov, “Dyadic wavelets and refinable functions on a half-line”, Sb. Math., 197:10 (2006), 1529–1558 | DOI | DOI | MR | Zbl
[7] V. Yu. Protasov, “Approximation by dyadic wavelets”, Sb. Math., 198:11 (2007), 1665–1681 | DOI | DOI | MR | Zbl
[8] E. A. Rodionov, Yu. A. Farkov, “Estimates of the smoothness of dyadic orthogonal wavelets of Daubechies type”, Math. Notes, 86:3 (2009), 407–421 | DOI | DOI | MR | Zbl
[9] Yu. A. Farkov, “Examples of frames on the Cantor dyadic group”, J. Math. Sci. (N. Y.), 187:1 (2012), 22–34 | DOI | MR | Zbl
[10] Yu. A. Farkov, “Biorthogonal wavelets on Vilenkin groups”, Proc. Steklov Inst. Math., 265:1 (2009), 101–114 | DOI | MR | Zbl
[11] Yu. A. Farkov, “Orthogonal wavelets with compact support on locally compact Abelian groups”, Izv. Math., 69:3 (2005), 623–650 | DOI | DOI | MR | Zbl
[12] Yu. A. Farkov, “Orthogonal wavelets on direct products of cyclic groups”, Math. Notes, 82:6 (2007), 843–859 | DOI | DOI | MR | Zbl
[13] Yu. A. Farkov, E. A. Rodionov, “Algorithms for wavelet construction on Vilenkin groups”, $p$-Adic Numbers Ultrametric Anal. Appl., 3:3 (2011), 181–195 | DOI | MR | Zbl
[14] S. F. Lukomskii, “Step refinable functions and orthogonal MRA on Vilenkin groups”, J. Fourier Anal. Appl., 20:1 (2014), 42–65 | DOI | MR
[15] S. F. Lukomskii, Trees in wavelet analysis on Vilenkin groups, 2013, arXiv: 1303.5635
[16] A. Yu. Khrennikov, V. M. Shelkovich, M. Skopina, “$p$-adic refinable functions and MRA-based wavelets”, J. Approx. Theory, 161:1 (2009), 226–238 | DOI | MR | Zbl
[17] S. Albeverio, S. Evdokimov, M. Skopina, “$p$-adic nonorthogonal wavelet bases”, Izbrannye voprosy matematicheskoi fiziki i $p$-adicheskogo analiza, Sbornik statei, Tr. MIAN, 265, MAIK, M., 2009, 7–18 | MR | Zbl
[18] S. Albeverio, S. Evdokimov, M. Skopina, “$p$-adic multiresolution analysis and wavelet frames”, J. Fourier Anal. Appl., 16:5 (2010), 693–714 | DOI | MR | Zbl
[19] S. F. Lukomskii, “Multiresolution analysis on zero-dimensional Abelian groups and wavelets bases”, Sb. Math., 201:5 (2010), 669–691 | DOI | DOI | MR | Zbl
[20] S. F. Lukomskii, “Neortogonalnyi kratnomasshtabnyi analiz na nulmernykh lokalno kompaktnykh gruppakh”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 11 (2011), 25–32
[21] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, A. I. Rubinshtein, Multiplikativnye sistemy funktsii i garmonicheskii analiz na nulmernykh gruppakh, Elm, Baku, 1981, 180 pp. | MR | Zbl
[22] B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Academic Publishers Group, Dordrecht, 1991, xiv+368 pp. | DOI | MR | MR | Zbl | Zbl
[23] M. I. Kargapolov, Ju. I. Merzljakov, Fundamentals of the theory of groups, Grad. Texts in Math., 62, Springer-Verlag, New York–Berlin, 1979, xvii+203 pp. | MR | MR | Zbl | Zbl
[24] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Wavelet theory, Transl. Math. Monogr., 239, Amer. Math. Soc., Providence, RI, 2011, xiv+506 pp. | MR | MR | Zbl | Zbl
[25] M. Holschneider, Wavelets. An analysis tool, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1995, xiv+423 pp. | MR | Zbl
[26] B. Behera, Q. Jahan, “Biorthogonal wavelets on local fields of positive characteristic”, Commun. Math. Anal., 15:2 (2013), 52–75 | MR | Zbl