Description of the kernel of the generalized Minkowski transform on the sphere
Izvestiya. Mathematics , Tome 79 (2015) no. 1, pp. 40-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the generalized Minkowski transform that sends functions on a sphere to their weighted integrals over closed geodesics. We solve the problem of describing the kernel of this transform and some related classes of functions. As an application, we obtain new and definitive uniqueness theorems for functions on a sphere with zero weighted averages over great circles.
Keywords: spherical means, Minkowski transform, Legendre functions.
@article{IM2_2015_79_1_a2,
     author = {V. V. Volchkov and Vit. V. Volchkov and I. M. Savost'yanova},
     title = {Description of the kernel of the generalized {Minkowski} transform on the sphere},
     journal = {Izvestiya. Mathematics },
     pages = {40--59},
     publisher = {mathdoc},
     volume = {79},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a2/}
}
TY  - JOUR
AU  - V. V. Volchkov
AU  - Vit. V. Volchkov
AU  - I. M. Savost'yanova
TI  - Description of the kernel of the generalized Minkowski transform on the sphere
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 40
EP  - 59
VL  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a2/
LA  - en
ID  - IM2_2015_79_1_a2
ER  - 
%0 Journal Article
%A V. V. Volchkov
%A Vit. V. Volchkov
%A I. M. Savost'yanova
%T Description of the kernel of the generalized Minkowski transform on the sphere
%J Izvestiya. Mathematics 
%D 2015
%P 40-59
%V 79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a2/
%G en
%F IM2_2015_79_1_a2
V. V. Volchkov; Vit. V. Volchkov; I. M. Savost'yanova. Description of the kernel of the generalized Minkowski transform on the sphere. Izvestiya. Mathematics , Tome 79 (2015) no. 1, pp. 40-59. http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a2/

[1] G. Minkovskii, “O tѣlakh' postoyannoi shiriny”, Matem. sb., 25:3 (1905), 505–508 | Zbl

[2] V. P. Palamodov, Integralnaya geometriya i kompyuternaya tomografiya, Izd-vo MK NMU, M., 1997, 68 pp.

[3] A. A. Kirillov, Elements of the theory of representations, Grundlehren Math. Wiss., 220, Springer-Verlag, Berlin–New York, 1976, xi+315 pp. | MR | MR | Zbl | Zbl

[4] S. Helgason, Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions, Pure Appl. Math., 113, Academic Press, Inc., Orlando, FL, 1984, xix+654 pp. | MR | MR | Zbl

[5] S. Helgason, Integral geometry and Radon transforms, Springer, New York, 2011, xiv+301 pp. | DOI | MR | Zbl

[6] V. V. Volchkov, Integral geometry and convolution equations, Kluwer Academic Publishers, Dordrecht, 2003, xii+454 pp. | DOI | MR | Zbl

[7] V. V. Volchkov, Vit. V. Volchkov, Harmonic analysis of mean periodic functions on symmetric spaces and the Heisenberg group, Springer Monogr. Math., Springer-Verlag London, Ltd., London, 2009, xii+671 pp. | DOI | MR | Zbl

[8] V. V. Volchkov, Vit. V. Volchkov, Offbeat integral geometry on symmetric spaces, Birkhäuser/Springer Basel AG, Basel, 2013, x+592 pp. | DOI | MR | Zbl

[9] E. T. Quinto, “Pompeiu transforms on geodesic spheres in real analytic manifolds”, Israel J. Math., 84:3 (1993), 353–363 | DOI | MR | Zbl

[10] E. T. Quinto, “Radon transforms on curves in the plane”, Tomography, impedance imaging, and integral geometry, Lectures in Appl. Math., 30, eds. E. T. Quinto, M. Cheney, P. Kuchment, Amer. Math. Soc., South Hadley, MA, 1993, 1994, 231–244 | MR | Zbl

[11] Yiying Zhou, “Two radius support theorem for the sphere transform”, J. Math. Anal. Appl., 254:1 (2001), 120–137 | DOI | MR | Zbl

[12] E. T. Quinto, “The invertibility of rotation invariant Radon transforms”, J. Math. Anal. Appl., 91:2 (1983), 510–522 | DOI | MR | Zbl

[13] Á. Kurusa, “Support theorems for the totally geodesic Radon transform on constant curvature spaces”, Proc. Amer. Math. Soc., 122:2 (1994), 429–435 | DOI | MR | Zbl

[14] N. Ja. Vilenkin, Special functions and the theory of group representations, Transl. Math. Monogr., 22, Amer. Math. Soc., Providence, R. I., 1968, x+613 pp. | MR | MR | Zbl | Zbl

[15] V. V. Volchkov, “Mean value theorems for a class of polynomials”, Siberian Math. J., 35:4 (1994), 656–663 | DOI | MR | Zbl

[16] F. John, Plane waves and spherical means applied to partial differential equations, Interscience Publishers, New York–London, 1955, viii+172 pp. | MR | Zbl

[17] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. I, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xxvi+302 pp. | MR | MR | Zbl | Zbl

[18] E. C. Titchmarsh, The theory of functions, 2nd ed., Oxford Univ. Press, Oxford, 1939, x+454 pp. | MR | MR | Zbl | Zbl

[19] S. Lang, $\operatorname{SL}_2(R)$, Addison-Wesley Publishing Co., Reading, Mass.–London–Amsterdam, 1975, xvi+428 pp. | MR | MR | Zbl

[20] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, N.J., 1971, x+297 pp. | MR | Zbl | Zbl