Distribution of real algebraic numbers of arbitrary degree in short intervals
Izvestiya. Mathematics , Tome 79 (2015) no. 1, pp. 18-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider real algebraic numbers $\alpha$ of degree $\operatorname{deg}\alpha=n$ and height $H=H(\alpha)$. There are intervals $I\subset\mathbb{R}$ of length $|I|$ whose interiors contain no real algebraic numbers $\alpha$ of any degree with $H(\alpha)\frac12|I|^{-1}$. We prove that one can always find a constant $c_1=c_1(n)$ such that if $Q$ is a positive integer and $Q>c_1|I|^{-1}$, then the interior of $I$ contains at least $c_2(n)Q^{n+1}|I|$ real algebraic numbers $\alpha$ with $\operatorname{deg}\alpha=n$ and $H(\alpha)\le Q$. We use this result to solve a problem of Bugeaud on the regularity of the set of real algebraic numbers in short intervals.
Keywords: algebraic numbers, regular systems.
@article{IM2_2015_79_1_a1,
     author = {V. I. Bernik and F. G\"otze},
     title = {Distribution of real algebraic numbers of arbitrary degree in short intervals},
     journal = {Izvestiya. Mathematics },
     pages = {18--39},
     publisher = {mathdoc},
     volume = {79},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a1/}
}
TY  - JOUR
AU  - V. I. Bernik
AU  - F. Götze
TI  - Distribution of real algebraic numbers of arbitrary degree in short intervals
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 18
EP  - 39
VL  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a1/
LA  - en
ID  - IM2_2015_79_1_a1
ER  - 
%0 Journal Article
%A V. I. Bernik
%A F. Götze
%T Distribution of real algebraic numbers of arbitrary degree in short intervals
%J Izvestiya. Mathematics 
%D 2015
%P 18-39
%V 79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a1/
%G en
%F IM2_2015_79_1_a1
V. I. Bernik; F. Götze. Distribution of real algebraic numbers of arbitrary degree in short intervals. Izvestiya. Mathematics , Tome 79 (2015) no. 1, pp. 18-39. http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a1/

[1] W. M. Schmidt, “$T$-numbers do exist” (INDAM, Rome, 1968/1969), Sympos. Math., IV, Academic Press, London, 1970, 3–26 | MR | Zbl

[2] Y. Bugeaud, “Mahler's classification of numbers compared with Koksma's”, Acta Arith., 110:1 (2003), 89–105 | DOI | MR | Zbl

[3] D. U. Kalyada, “Ab razmerkavanni rechaisnykh algebraichnykh likay̆ dadzenai stupeni”, Dokl. NAN Belarusi, 56:3 (2012), 28–33

[4] A. Baker, W. Schmidt, “Diophantine approximation and Hausdorff dimension”, Proc. London Math. Soc. (3), 21:1 (1970), 1–11 | DOI | MR | Zbl

[5] V. I. Bernik, “O tochnom poryadke priblizheniya nulya znacheniyami tselochislennykh mnogochlenov”, Acta Arith., 53:1 (1989), 17–28 | MR | Zbl

[6] V. Beresnevich, “On approximation of real numbers by real algebraic numbers”, Acta Arith., 90:2 (1999), 97–112 | MR | Zbl

[7] Y. Bugeaud, Approximation by algebraic numbers, Cambridge Tracts in Math., 160, Cambridge Univ. Press, Cambridge, 2004, xvi+274 pp. | DOI | MR | Zbl

[8] V. Bernik, F. Götze, O. Kukso, “Regular systems of real algebraic numbers of third degree in small intervals”, Analytic and probabilistic methods in number theory, eds. E. Manstavičus et al., TEV, Vilnius, 2012, 61–68 | MR | Zbl

[9] N. V. Budarina, V. I. Bernik, Kh. O'Donnell, “Deistvitelnye algebraicheskie chisla tretei stepeni v korotkikh intervalakh”, Dokl. NAN Belarusi, 57:4 (2012), 23–26

[10] V. G. Sprindzuk, Mahler's problem in metric number theory, Transl. Math. Monogr., 25, Amer. Math. Soc., Providence, R.I., 1969, vii+192 pp. | MR | MR | Zbl | Zbl

[11] V. I. Bernik, “Primenenie razmernosti Khausdorfa v teorii diofantovykh priblizhenii”, Acta Arith., 42:3 (1983), 219–253 | MR | Zbl

[12] N. I. Fel'dman, “Approximation of certain transcendental numbers. I. The approximation of logarithms of algebraic numbers”, Amer. Math. Soc. Transl. Ser. 2, 59, 1966, 224–245 | MR | Zbl