Irrationality measure of the number $\frac{\pi}{\sqrt{3}}$
Izvestiya. Mathematics , Tome 79 (2015) no. 1, pp. 1-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a new integral construction combining the idea of symmetry suggested by Salikhov in 2007 and the integral introduced by Marcovecchio in 2009, we obtain a new bound for the irrationality measure of $\frac{\pi}{\sqrt{3}}$.
Keywords: irrationality measure, linear form, complex integral.
@article{IM2_2015_79_1_a0,
     author = {V. A. Androsenko},
     title = {Irrationality measure of the number $\frac{\pi}{\sqrt{3}}$},
     journal = {Izvestiya. Mathematics },
     pages = {1--17},
     publisher = {mathdoc},
     volume = {79},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a0/}
}
TY  - JOUR
AU  - V. A. Androsenko
TI  - Irrationality measure of the number $\frac{\pi}{\sqrt{3}}$
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 1
EP  - 17
VL  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a0/
LA  - en
ID  - IM2_2015_79_1_a0
ER  - 
%0 Journal Article
%A V. A. Androsenko
%T Irrationality measure of the number $\frac{\pi}{\sqrt{3}}$
%J Izvestiya. Mathematics 
%D 2015
%P 1-17
%V 79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a0/
%G en
%F IM2_2015_79_1_a0
V. A. Androsenko. Irrationality measure of the number $\frac{\pi}{\sqrt{3}}$. Izvestiya. Mathematics , Tome 79 (2015) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/IM2_2015_79_1_a0/

[1] L. V. Danilov, “Rational approximations of some functions at rational points”, Math. Notes, 24:4 (1978), 741–746 | DOI | MR | Zbl

[2] K. Alladi, M. L. Robinson, “Legendre polynomials and irrationality”, J. Reine Angew. Math., 318 (1980), 137–155 | MR | Zbl

[3] D. V. Chudnovsky, G. V. Chudnovsky, “Recurrences, Padé approximations and their applications”, Classical quantum models and arithmetic problems, Lecture Notes in Pure and Appl. Math., 92, Dekker, New York, 1984, 215–238 | MR | Zbl

[4] A. K. Dubickas, “Approximation of $\frac{\pi}{\sqrt{3}}$ by rational fractions”, Moscow Univ. Math. Bull., 42:6 (1987), 76–79 | MR | Zbl

[5] M. Hata, “Legendre type polynomials and irrationality measures”, J. Reine Angew. Math., 407 (1990), 99–125 | DOI | MR | Zbl

[6] G. Rhin, “Approximants de Padé et mesures effectives d'irrationalité”, Séminaire de théorie des nombres (Paris, 1985–86), Progr. Math., 71, Birkhäuser Boston, Boston, MA, 1987, 155–164 | DOI | MR | Zbl

[7] M. Hata, “Rational approximations to $\pi$ and some other numbers”, Acta Arith., 63:4 (1993), 335–349 | MR | Zbl

[8] V. Kh. Salikhov, “On the irrationality measure of $\ln 3$”, Dokl. Math., 76:3 (2007), 955–957 | DOI | MR | Zbl

[9] V. Kh. Salikhov, “On the measure of irrationality of the number $\pi$”, Math. Notes, 88:4 (2010), 563–573 | DOI | DOI | MR | Zbl

[10] R. Marcovecchio, “The Rhin–Viola method for $\log 2$”, Acta Arith., 139:2 (2009), 147–184 | DOI | MR | Zbl

[11] V. A. Androsenko, V. Kh. Salikhov, “Integral Markovekkio i mera irratsionalnosti $\frac{\pi}{\sqrt{3}}$”, Vestn. Bryansk. gos. tekh. un-ta, 4 (2011), 129–132

[12] G. Rhin, C. Viola, “On a permutation group related to $\zeta(2)$”, Acta Arith., 77:1 (1996), 23–56 | MR | Zbl

[13] W. V. Zudilin, “Cancellation of factorials”, Sb. Math., 192:8 (2001), 1181–1207 | DOI | DOI | MR | Zbl

[14] Yu. V. Nesterenko, “On the irrationality exponent of the number $\ln 2$”, Math. Notes, 88:4 (2010), 530–543 | DOI | DOI | MR | Zbl

[15] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. I, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xxvi+302 pp. | MR | MR | Zbl | Zbl