On invariants of free restricted Lie algebras
Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1195-1206.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the invariant subalgebra $L^G$ is infinitely generated, where $L=L(X)$ is the free restricted Lie algebra of finite rank $k$ with free generating set $X=\{x_1,\dots,x_k\}$ over an arbitrary field of positive characteristic and $G$ is a non-trivial finite group of homogeneous automorphisms of $L(X)$. We show that the sequence $|Y_n|$, $n\geqslant1$, grows exponentially with base $k$, where $Y=\bigcup_{n=1}^\infty Y_n$ is a free homogeneous generating set of $L^G$ and all the elements of $Y_n$ are of degree $n$ in $X$, $n\geqslant1$. We prove that the radius of convergence of the generating function $\mathcal H(Y,t)=\sum_{n=1}^\infty|Y_n|t^n$ is equal to $1/k$ and find an asymptotic formula for the growth of $\mathcal H(Y,t)$ as $t\to1/k-0$.
Keywords: free Lie algebras, restricted Lie algebras, generating functions
Mots-clés : invariants, group actions.
@article{IM2_2014_78_6_a7,
     author = {Victor Petrogradsky and I. A. Subbotin},
     title = {On invariants of free restricted {Lie} algebras},
     journal = {Izvestiya. Mathematics },
     pages = {1195--1206},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a7/}
}
TY  - JOUR
AU  - Victor Petrogradsky
AU  - I. A. Subbotin
TI  - On invariants of free restricted Lie algebras
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 1195
EP  - 1206
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a7/
LA  - en
ID  - IM2_2014_78_6_a7
ER  - 
%0 Journal Article
%A Victor Petrogradsky
%A I. A. Subbotin
%T On invariants of free restricted Lie algebras
%J Izvestiya. Mathematics 
%D 2014
%P 1195-1206
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a7/
%G en
%F IM2_2014_78_6_a7
Victor Petrogradsky; I. A. Subbotin. On invariants of free restricted Lie algebras. Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1195-1206. http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a7/

[1] T. Molien, “Ueber die Invarianten der linearen Substitutionsgruppen”, Berl. Ber., 1897, 1152–1156 | Zbl

[2] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Ch. IV: Groupes de Coxeter et systm̀es de Tits. Ch. V: Groupes engendrés par des réflexions. Ch. VI: Systèmes de racines, Actualites Sci. Indust., 1337, Hermann, Paris, 1968, 288 pp. | MR | MR | Zbl | Zbl

[3] R. P. Stanley, “Relative invariants of finite groups generated by pseudoreflections”, J. Algebra, 49:1 (1977), 134–148 | DOI | MR | Zbl

[4] V. K. Kharchenko, “Algebras of invariants of free algebras”, Algebra and Logic, 17:4 (1979), 316–321 | DOI | MR | Zbl

[5] W. Dicks, E. Formanek, “Poincaré series and a problem of S. Montgomery”, Linear and Multilinear Algebra, 12:1 (1982), 21–30 | DOI | MR | Zbl

[6] V. K. Kharchenko, “Noncommutative invariants of finite groups and Noetherian varieties”, J. Pure Appl. Algebra, 31:1-3 (1984), 83–90 | DOI | MR | Zbl

[7] V. K. Kharchenko, Nekommutativnaya teoriya Galua, Nauch. kniga, Novosibirsk, 1996, viii+370 pp. | MR | Zbl

[8] V. M. Petrogradsky, “Growth of finitely generated polynilpotent Lie algebras and groups, generalized partitions, and functions analytic in the unit circle”, Internat. J. Algebra Comput., 9:2 (1999), 179–212 | DOI | MR | Zbl

[9] V. M. Petrogradsky, “Asymptotic problems in algebraic structures”, Limit of graphs in group theory and computer science, eds. G. Arzhantseva, A. Valette, EPFL Press, Lausanne, 2009, 77–108 | MR | Zbl

[10] A. I. Shirshov, “Podalgebry svobodnykh lievykh algebr”, Matem. cb., 33(75):2 (1953), 441–452 | MR | Zbl

[11] E. Witt, “Die Unterringe der freien Lieschen Ringe”, Math. Z., 64:1 (1956), 195–216 | DOI | MR | Zbl

[12] V. M. Petrogradsky, “Schreier's formula for free Lie algebras”, Arch. Math., 75:1 (2000), 16–28 | DOI | MR | Zbl

[13] R. M. Bryant, “On the fixed points of a finite group acting on a free Lie algebra”, J. London Math. Soc. (2), 43:2 (1991), 215–224 | DOI | MR | Zbl

[14] V. Drensky, “Fixed algebras of residually nilpotent Lie algebras”, Proc. Amer. Math. Soc., 120:4 (1994), 1021–1028 | DOI | MR | Zbl

[15] R. M. Bryant, A. I. Papistas, “On the fixed points of a finite group acting on a relatively free Lie algebra”, Glasg. Math. J., 42:2 (2000), 167–181 | DOI | MR | Zbl

[16] A. A. Mikhalev, “On fixed points of a free chromatic Lie superalgebra under the action of a finite group of linear automorphisms”, Russian Math. Surveys, 47:4 (1992), 220–221 | DOI | MR | Zbl

[17] Yu.,A. Bahturin, Identical relations in Lie algebras, VNU Science Press, Utrecht, 1987, x+309 pp. | MR | MR | Zbl | Zbl

[18] Yu. A. Bahturin, A. A. Mikhalev, V. M. Petrogradsky, M. V. Zaicev, Infinite dimensional Lie superalgebras, de Gruyter Exp. Math., 7, de Gruyter, Berlin, 1992, x+250 pp. | MR | Zbl

[19] C. Reutenauer, Free Lie algebras, London Math. Soc. Monogr. (N.S.), 7, The Clarendon Press, Oxford Univ. Press, New York, 1993, xviii+269 pp. | MR | Zbl

[20] V. M. Petrogradsky, “On invariants of the action of a finite group on a free Lie algebra”, Siberian Math. J., 41:4 (2000), 763–770 | DOI | MR | Zbl

[21] V. M. Petrogradsky, “On Witt's formula and invariants for free Lie superalgebras”, Formal power series and algebraic combinatorics (Moscow, 2000), Springer, Berlin, 2000, 543–551 | MR | Zbl

[22] V. M. Petrogradsky, “Characters and invariants for free Lie superalgebras”, St. Petersburg Math. J., 13:1 (2002), 107–122 | MR | Zbl

[23] V. M. Petrogradsky, A. A. Smirnov, “On invariants of modular free Lie algebras”, J. Math. Sci., 166:6 (2010), 767–772 | DOI | MR | Zbl

[24] N. Jacobson, Lie algebras, Interscience Tracts in Pure and Appl. Math., 10, Interscience Publ., New York–London, 1962, ix+331 pp. | MR | MR | Zbl | Zbl

[25] V. M. Petrogradsky, “Witt's formula for restricted Lie algebras”, Adv. in Appl. Math., 30:1-2 (2003), 219–227 | DOI | MR | Zbl

[26] A. I. Markushevich, Teoriya analiticheskikh funktsii, v. 1, Nauka, M., 1967, 486 pp. | MR | Zbl