On invariants of free restricted Lie algebras
Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1195-1206
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the invariant subalgebra $L^G$ is infinitely generated, where $L=L(X)$ is the free restricted Lie algebra of finite rank $k$ with free generating set $X=\{x_1,\dots,x_k\}$ over an arbitrary field of positive characteristic and $G$ is a non-trivial finite group of homogeneous automorphisms of $L(X)$. We show that the sequence $|Y_n|$, $n\geqslant1$, grows exponentially with base $k$, where $Y=\bigcup_{n=1}^\infty Y_n$ is a free homogeneous generating set of $L^G$ and all the elements of $Y_n$ are of degree $n$ in $X$, $n\geqslant1$. We prove that the radius of convergence of the generating function $\mathcal H(Y,t)=\sum_{n=1}^\infty|Y_n|t^n$ is equal to $1/k$ and find an asymptotic formula for the growth of $\mathcal H(Y,t)$ as $t\to1/k-0$.
Keywords:
free Lie algebras, restricted Lie algebras, generating functions
Mots-clés : invariants, group actions.
Mots-clés : invariants, group actions.
@article{IM2_2014_78_6_a7,
author = {Victor Petrogradsky and I. A. Subbotin},
title = {On invariants of free restricted {Lie} algebras},
journal = {Izvestiya. Mathematics },
pages = {1195--1206},
publisher = {mathdoc},
volume = {78},
number = {6},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a7/}
}
Victor Petrogradsky; I. A. Subbotin. On invariants of free restricted Lie algebras. Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1195-1206. http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a7/