The Cartan equivalence problem for Levi-non-degenerate real hypersurfaces $M^3\subset\mathbb C^2$
Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1158-1194

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop the Cartan equivalence problem for Levi-non-degenerate $\mathcal C^6$-smooth real hypersurfaces $M^3$ in $\mathbb C^2$ in great detail, performing all computations effectively in terms of local graphing functions. In particular, we present explicitly the unique (complex) essential invariant $\mathfrak{J}$ of the problem. Comparison with our previous joint results [1] shows that the Cartan–Tanaka geometry of these real hypersurfaces perfectly matches their biholomorphic equivalence.
Keywords: CR-manifolds, Levi non-degeneracy, curvature tensor.
Mots-clés : essential torsions, $G$-structures
@article{IM2_2014_78_6_a6,
     author = {J. Merker and M. Sabzevari},
     title = {The {Cartan} equivalence problem for {Levi-non-degenerate} real hypersurfaces $M^3\subset\mathbb C^2$},
     journal = {Izvestiya. Mathematics },
     pages = {1158--1194},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a6/}
}
TY  - JOUR
AU  - J. Merker
AU  - M. Sabzevari
TI  - The Cartan equivalence problem for Levi-non-degenerate real hypersurfaces $M^3\subset\mathbb C^2$
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 1158
EP  - 1194
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a6/
LA  - en
ID  - IM2_2014_78_6_a6
ER  - 
%0 Journal Article
%A J. Merker
%A M. Sabzevari
%T The Cartan equivalence problem for Levi-non-degenerate real hypersurfaces $M^3\subset\mathbb C^2$
%J Izvestiya. Mathematics 
%D 2014
%P 1158-1194
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a6/
%G en
%F IM2_2014_78_6_a6
J. Merker; M. Sabzevari. The Cartan equivalence problem for Levi-non-degenerate real hypersurfaces $M^3\subset\mathbb C^2$. Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1158-1194. http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a6/