The Cartan equivalence problem for Levi-non-degenerate real hypersurfaces $M^3\subset\mathbb C^2$
Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1158-1194.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop the Cartan equivalence problem for Levi-non-degenerate $\mathcal C^6$-smooth real hypersurfaces $M^3$ in $\mathbb C^2$ in great detail, performing all computations effectively in terms of local graphing functions. In particular, we present explicitly the unique (complex) essential invariant $\mathfrak{J}$ of the problem. Comparison with our previous joint results [1] shows that the Cartan–Tanaka geometry of these real hypersurfaces perfectly matches their biholomorphic equivalence.
Keywords: CR-manifolds, Levi non-degeneracy, curvature tensor.
Mots-clés : essential torsions, $G$-structures
@article{IM2_2014_78_6_a6,
     author = {J. Merker and M. Sabzevari},
     title = {The {Cartan} equivalence problem for {Levi-non-degenerate} real hypersurfaces $M^3\subset\mathbb C^2$},
     journal = {Izvestiya. Mathematics },
     pages = {1158--1194},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a6/}
}
TY  - JOUR
AU  - J. Merker
AU  - M. Sabzevari
TI  - The Cartan equivalence problem for Levi-non-degenerate real hypersurfaces $M^3\subset\mathbb C^2$
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 1158
EP  - 1194
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a6/
LA  - en
ID  - IM2_2014_78_6_a6
ER  - 
%0 Journal Article
%A J. Merker
%A M. Sabzevari
%T The Cartan equivalence problem for Levi-non-degenerate real hypersurfaces $M^3\subset\mathbb C^2$
%J Izvestiya. Mathematics 
%D 2014
%P 1158-1194
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a6/
%G en
%F IM2_2014_78_6_a6
J. Merker; M. Sabzevari. The Cartan equivalence problem for Levi-non-degenerate real hypersurfaces $M^3\subset\mathbb C^2$. Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1158-1194. http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a6/

[1] J. Merker, M. Sabzevari, “Explicit expression of Cartan's connection for Levi-nondegenerate 3-manifolds in complex surfaces, and identification of the Heisenberg sphere”, Cent. Eur. J. Math., 10:5 (2012), 1801–1835 ; M. Aghasi, J. Merker, M. Sabzevari, Effective Cartan–Tanaka connections on $\mathscr C^6$ strongly pseudoconvex hypersurfaces $M^3$ of $\mathbb C^2$, 2011, 112 pp., arXiv: 1104.1509 | DOI | MR | Zbl

[2] H. Poincaré, “Les fonctions analytiques de deux variables et la représentation conforme”, Rend. Circ. Math. Palermo, 23:1 (1907), 185–220 | DOI | Zbl

[3] É. Cartan, “Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes. I”, Ann. Math. Pura Appl. (4), 11:1 (1932), 17–90 | DOI | Zbl

[4] J. Merker, M. Sabzevari, Cartan equivalence problem for 5-dimensional CR-manifolds in $\mathbb C^4$ (to appear)

[5] S. Pocchiola, Absolute parallelism and Cartan connection for $2$-nondegenerate real hypersurfaces $M^5\subset\mathbb C^3$ of constant Levi rank $1$

[6] P. J. Olver, Equivalence, invariants and symmetry, Cambridge Univ. Press, Cambridge, 1995, xvi+525 pp. | DOI | MR | Zbl

[7] R. B. Gardner, The method of equivalence and its applications (Society for Industrial and Applied Mathematics (SIAM)), CBMS-NSF Regional Conf. Ser. in Appl. Math., 58, Philadelphia, PA, 1989, viii+127 pp. | DOI | MR | Zbl

[8] S. S. Chern, J. K. Moser, “Real hypersurfaces in complex manifolds”, Acta Math., 133:1 (1974), 219–271 | DOI | MR | MR | Zbl | Zbl

[9] N. Tanaka, “On differential systems, graded Lie algebras and pseudo-groups”, J. Math. Kyoto Univ., 10 (1970), 1–82 | MR | Zbl

[10] V. Ezhov, B. McLaughlin, G. Schmalz, “From Cartan to Tanaka: getting real in the complex world”, Notices Amer. Math. Soc., 58:1 (2011), 20–27 | MR | Zbl

[11] J. Merker, “Nonrigid spherical real analytic hypersurfaces in $\mathbb{C}^2$”, Complex Var. Elliptic Equ., 55:12 (2010), 1155–1182 | DOI | MR | Zbl

[12] H. Jacobowitz, An introduction to CR structures, Math. Surveys Monogr., 32, Amer. Math. Soc., Providence, RI, 1990, x+237 pp. | DOI | MR | Zbl

[13] C. Grissom, G. Thompson, G. Wilkens, “Linearization of second order ordinary differential equations via Cartan's equivalence method”, J. Differential Equations, 77:1 (1989), 1–15 | DOI | MR | Zbl

[14] P. Nurowski, G. A. J. Sparling, “Three-dimensional Cauchy–Riemann structures and second-order ordinary differential equations”, Classical Quantum Gravity, 20:23 (2003), 4995–5016 | DOI | MR | Zbl

[15] V. K. Beloshapka, “CR-varieties of the type $(1,2)$ as varieties of “super-high” codimension”, Russian J. Math. Phys., 5:3 (1997), 399–404 | MR | Zbl

[16] V. K. Beloshapka, “Real submanifolds in complex space: polynomial models, automorphisms, and classification problems”, Russian Math. Surveys, 57:1 (2002), 1–41 | DOI | DOI | MR | Zbl

[17] V. K. Beloshapka, “Universal models for real submanifolds”, Math. Notes, 75:4 (2004), 475–488 | DOI | DOI | MR | Zbl

[18] V. K. Beloshapka, “Representation of the group of holomorphic symmetries of a real germ in the symmetry group of its model surface”, Math. Notes, 82:4 (2007), 461–463 | DOI | DOI | MR | Zbl

[19] V. K. Beloshapka, V. Ezhov, G. Schmalz, “Canonical Cartan connection and holomorphic invariants on Engel CR manifolds”, Russ. J. Math. Phys., 14:2 (2007), 121–133 | DOI | MR | Zbl

[20] J. Merker, E. Porten, “Holomorphic extension of CR functions, envelopes of holomorphy, and removable singularities”, IMRS Int. Math. Res. Surv., 2006:1 (2006), Art. ID 28295, 287 pp. | DOI | MR | Zbl

[21] O. Stormark, Lie's structural approach to PDE systems, Encyclopedia Math. Appl., 80, Cambridge Univ. Press, Cambridge, 2000, xvi+572 pp. | DOI | MR | Zbl

[22] R. W. Sharpe, “Differential geometry. Cartan's generalization of Klein's Erlangen program”, Grad. Texts in Math., 166, Springer-Verlag, New York, 1997, xx+421 pp. | MR | Zbl