On the best methods for recovering derivatives in Sobolev classes
Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1138-1157.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct the best (optimal) methods for recovering derivatives of functions in generalized Sobolev classes of functions on $\mathbb R^d$ provided that for every such function we know (exactly or approximately) its Fourier transform on an arbitrary measurable set $A\subset\mathbb R^d$. In both cases we construct families of optimal methods. These methods use only part of the information about the Fourier transform, and this part is subject to some filtration. We consider the problem of finding the best set for the recovery of a given derivative among all sets of a fixed measure.
Keywords: optimal recovery, Sobolev class, extremal problem
Mots-clés : Fourier transform.
@article{IM2_2014_78_6_a5,
     author = {G. G. Magaril-Il'yaev and K. Yu. Osipenko},
     title = {On the best methods for recovering derivatives in {Sobolev} classes},
     journal = {Izvestiya. Mathematics },
     pages = {1138--1157},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a5/}
}
TY  - JOUR
AU  - G. G. Magaril-Il'yaev
AU  - K. Yu. Osipenko
TI  - On the best methods for recovering derivatives in Sobolev classes
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 1138
EP  - 1157
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a5/
LA  - en
ID  - IM2_2014_78_6_a5
ER  - 
%0 Journal Article
%A G. G. Magaril-Il'yaev
%A K. Yu. Osipenko
%T On the best methods for recovering derivatives in Sobolev classes
%J Izvestiya. Mathematics 
%D 2014
%P 1138-1157
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a5/
%G en
%F IM2_2014_78_6_a5
G. G. Magaril-Il'yaev; K. Yu. Osipenko. On the best methods for recovering derivatives in Sobolev classes. Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1138-1157. http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a5/

[1] A. Kolmogoroff, “Über die beste Annäherung von Functionen einer gegebenen Functionenklasse”, Ann. of Math. (2), 37:1 (1936), 107–110 | DOI | MR | Zbl

[2] A. Sard, “Best approximate integration formulas; best approximation formulas”, Amer. J. Math., 71:1 (1949), 80–91 | DOI | MR | Zbl

[3] S. M. Nikolskii, “K voprosu ob otsenkakh priblizhenii kvadraturnymi formulami”, UMN, 5:2(36) (1950), 165–177 | MR | Zbl

[4] S. A. Smolyak, Ob optimalnom vosstanovlenii funktsii i funktsionalov ot nikh, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1965

[5] C. A. Micchelli, T. J. Rivlin, “A survey of optimal recovery”, Optimal estimation in approximation theory, Proc. Internat. Sympos. (Freudenstadt, 1976), Plenum, New York, 1977, 1–54 | MR | Zbl

[6] Dzh. Fr. Traub, X. Vozhnyakovskii, Obschaya teoriya optimalnykh algoritmov, Mir, M., 1983, 382 pp. ; J. F. Traub, H. Woźniakowski, A general theory of optimal algorithms, ACM Monograph Series, Academic Press, Inc., New York–London, 1980, xiv+341 pp. | MR | Zbl | MR | Zbl

[7] C. A. Micchelli, T. J. Rivlin, “Lectures on optimal recovery”, Numerical analysis Lancaster 1984 (Lancaster, 1984), Lecture Notes in Math., 1129, Springer-Verlag, Berlin, 1984, 21–93 | DOI | MR | Zbl

[8] V. V. Arestov, “Nailuchshee vosstanovlenie operatorov i rodstvennye zadachi”, Sbornik trudov Vsesoyuznoi shkoly po teorii funktsii (Dushanbe, avgust 1986 g.), Tr. MIAN SSSR, 189, Nauka, M., 1989, 3–20 ; V. V. Arestov, “Optimal recovery of operators and related problems”, Proc. Steklov Inst. Math., 189:4 (1990), 1–20 | MR | Zbl

[9] K. Yu. Osipenko, Optimal recovery of analytic functions, Nova Science Publ., Inc., Huntington, New York, 2000, 220 pp.

[10] G. G. Magaril-Ilyaev, V. M. Tikhomirov, Vypuklyi analiz i ego prilozheniya, Editorial URSS, M., 2011, 176 pp.; G. G. Magaril-Il'yaev, V. M. Tikhomirov, Convex analysis: theory and applications, Transl. Math. Monogr., 222, Amer. Math. Soc., Providence, RI, 2003, viii+183 pp. | MR | Zbl

[11] G. G. Magaril-Il'yaev, V. M. Tikhomirov, Convex analysis: theory and applications, Transl. Math. Monogr., 222, Amer. Math. Soc., Providence, RI, 2003, viii+183 pp. | MR | Zbl

[12] G. G. Magaril-Ilyaev, K. Yu. Osipenko, “Optimalnoe vosstanovlenie funktsii i ikh proizvodnykh po priblizhennoi informatsii o spektre i neravenstva dlya proizvodnykh”, Funkts. analiz i ego pril., 37:3 (2003), 51–64 | DOI | MR | Zbl

[13] G. G. Magaril-Ilyaev, K. Yu. Osipenko, “O vosstanovlenii operatorov svertochnogo tipa po netochnoi informatsii”, Teoriya funktsii i differentsialnye uravneniya, Sb. statei., Tr. MIAN, 269, MAIK, M., 2010, 181–192 | MR | Zbl

[14] G. G. Magaril-Ilyaev, K. Yu. Osipenko, “Ob optimalnom garmonicheskom sinteze po netochno zadannomu spektru”, Funkts. analiz i ego pril., 44:3 (2010), 76–79 | DOI | MR | Zbl

[15] G. G. Magaril-Ilyaev, K. Yu. Osipenko, “O nailuchshem vybore informatsii v zadache vosstanovleniya funktsii po spektru”, Matematicheskii forum, v. 1, Issledovaniya po matematicheskomu analizu, VNTs RAN, Vladikavkaz, 2008, 142–150

[16] G. G. Magaril-Ilyaev, K. Yu. Osipenko, “Kak nailuchshim obrazom vosstanovit funktsiyu po netochno zadannomu spektru?”, Matem. zametki, 92:1 (2012), 59–67 | DOI | MR | Zbl

[17] G. G. Magaril-Ilyaev, E. O. Sivkova, “Nailuchshee vosstanovlenie operatora Laplasa funktsii po ee netochno zadannomu spektru”, Matem. sb., 203:4 (2012), 119–130 | DOI | MR | Zbl

[18] G. G. Magaril-Ilyaev, K. Yu. Osipenko, “Optimalnoe vosstanovlenie proizvodnykh na sobolevskikh klassakh”, Vladikavk. matem. zhurn., 5:1 (2003), 39–47 | MR | Zbl

[19] G. Khardi, Dzh. I. Littlvud, G. Polia, Neravenstva, IL, M., 1948, 456 pp. ; G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Univ. Press, Cambridge, 1934, xii+314 pp. | MR | MR | Zbl