On the best methods for recovering derivatives in Sobolev classes
Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1138-1157
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct the best (optimal) methods for
recovering derivatives of functions
in generalized Sobolev classes of functions
on $\mathbb R^d$ provided that for every
such function we know (exactly or approximately)
its Fourier transform on an arbitrary measurable
set $A\subset\mathbb R^d$. In both cases we
construct families of optimal methods. These
methods use only part of the information
about the Fourier transform, and this part
is subject to some filtration. We consider
the problem of finding the best set for the
recovery of a given derivative among all
sets of a fixed measure.
Keywords:
optimal recovery, Sobolev class, extremal problem
Mots-clés : Fourier transform.
Mots-clés : Fourier transform.
@article{IM2_2014_78_6_a5,
author = {G. G. Magaril-Il'yaev and K. Yu. Osipenko},
title = {On the best methods for recovering derivatives in {Sobolev} classes},
journal = {Izvestiya. Mathematics },
pages = {1138--1157},
publisher = {mathdoc},
volume = {78},
number = {6},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a5/}
}
TY - JOUR AU - G. G. Magaril-Il'yaev AU - K. Yu. Osipenko TI - On the best methods for recovering derivatives in Sobolev classes JO - Izvestiya. Mathematics PY - 2014 SP - 1138 EP - 1157 VL - 78 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a5/ LA - en ID - IM2_2014_78_6_a5 ER -
G. G. Magaril-Il'yaev; K. Yu. Osipenko. On the best methods for recovering derivatives in Sobolev classes. Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1138-1157. http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a5/