The asymptotic limit of an integro-differential equation modelling complex systems
Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1105-1119

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the asymptotic analysis of a mathematical framework that has recently been proposed for modelling complex systems in the applied sciences under the action of an external force field. This framework consists in an integro-differential kinetic equation coupled with a Gaussian isokinetic thermostat. The asymptotic limit obtained here using low-field scaling shows the emergence of diffusive behaviour on a macroscopic scale.
Keywords: integro-differential equation, low-field limit, velocity-jump process, kinetic theory.
Mots-clés : active particles
@article{IM2_2014_78_6_a3,
     author = {C. Bianca and M. Ferrara and L. Guerrini},
     title = {The asymptotic limit of an integro-differential equation modelling complex systems},
     journal = {Izvestiya. Mathematics },
     pages = {1105--1119},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a3/}
}
TY  - JOUR
AU  - C. Bianca
AU  - M. Ferrara
AU  - L. Guerrini
TI  - The asymptotic limit of an integro-differential equation modelling complex systems
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 1105
EP  - 1119
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a3/
LA  - en
ID  - IM2_2014_78_6_a3
ER  - 
%0 Journal Article
%A C. Bianca
%A M. Ferrara
%A L. Guerrini
%T The asymptotic limit of an integro-differential equation modelling complex systems
%J Izvestiya. Mathematics 
%D 2014
%P 1105-1119
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a3/
%G en
%F IM2_2014_78_6_a3
C. Bianca; M. Ferrara; L. Guerrini. The asymptotic limit of an integro-differential equation modelling complex systems. Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1105-1119. http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a3/