Density of a~semigroup in a~Banach space
Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1079-1104
Voir la notice de l'article provenant de la source Math-Net.Ru
We study conditions on a set $M$ in a Banach space $X$ which are necessary or sufficient for the set $R(M)$ of all sums $x_1+\dots+x_n$, $x_k\in M$, to be dense in $X$. We distinguish conditions under which the closure $\overline{R(M)}$ is an additive subgroup of $X$, and conditions under which this additive subgroup is dense in $X$. In particular, we prove that if $M$ is a closed rectifiable curve in a uniformly convex and uniformly smooth Banach space $X$, and does not lie in a closed half-space $\{x\in X\colon f(x)\geqslant0\}$, $f\in X^*$, and is minimal in the sense that every proper subarc of $M$ lies in an open half-space $\{x\in X\colon f(x)>0\}$, then $\overline{R(M)}=X$. We apply our results to questions of approximation in various function spaces.
Keywords:
Banach space, additive semigroup, density, uniformly convex space, modulus of smoothness,
approximation
Mots-clés : simple partial fractions.
Mots-clés : simple partial fractions.
@article{IM2_2014_78_6_a2,
author = {P. A. Borodin},
title = {Density of a~semigroup in {a~Banach} space},
journal = {Izvestiya. Mathematics },
pages = {1079--1104},
publisher = {mathdoc},
volume = {78},
number = {6},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a2/}
}
P. A. Borodin. Density of a~semigroup in a~Banach space. Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1079-1104. http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a2/