Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2014_78_6_a2, author = {P. A. Borodin}, title = {Density of a~semigroup in {a~Banach} space}, journal = {Izvestiya. Mathematics }, pages = {1079--1104}, publisher = {mathdoc}, volume = {78}, number = {6}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a2/} }
P. A. Borodin. Density of a~semigroup in a~Banach space. Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1079-1104. http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a2/
[1] E. Hille, R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., 31, rev. ed., Amer. Math. Soc., Providence, R. I., 1957, xii+808 pp. | MR | MR | Zbl
[2] V. Temlyakov, “Nonlinear methods of approximation”, Found. Comput. Math., 3:1 (2003), 33–107 | DOI | MR | Zbl
[3] A. O. Gelfond, “O ravnomernykh priblizheniyakh mnogochlenami s tselymi ratsionalnymi koeffitsientami”, UMN, 10:1(63) (1955), 41–65 | MR | Zbl
[4] P. A. Borodin, O. N. Kosukhin, “On approximation by the simplest fractions on the real axis”, Moscow Univ. Math. Bull., 60:1 (2005), 1–6 | MR | Zbl
[5] P. A. Borodin, “Estimates of the distances to direct lines and rays from the poles of simplest fractions bounded in the norm of $L_p$ on these sets”, Math. Notes, 82:6 (2007), 725–732 | DOI | DOI | MR | Zbl
[6] P. A. Borodin, “Approximation by simple partial fractions on the semi-axis”, Sb. Math., 200:8 (2009), 1127–1148 | DOI | DOI | MR | Zbl
[7] V. I. Danchenko, D. Ya. Danchenko, “Approximation by simplest fractions”, Math. Notes, 70:4 (2001), 502–507 | DOI | DOI | MR | Zbl
[8] P. A. Borodin, “Approximation by simple partial fractions with constraints on the poles”, Sb. Math., 203:11 (2012), 1553–1570 | DOI | DOI | MR | Zbl
[9] T. Bonnesen, W. Fenchel, Theorie der konvexen Körper, Ergeb. Math. Grenzgeb., 3, Berlin, Springer, 1934 | MR | Zbl
[10] J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics, 45, Cambridge Univ. Press, New York, 1957, x+166 pp. | MR | MR | Zbl | Zbl
[11] N. Burbaki, Obschaya topologiya. Topologicheskie gruppy. Chisla i svyazannye s nimi gruppy i prostranstva, Nauka, M., 1969, 392 pp. ; N. Bourbaki, Éléments de mathématique. Première partie. (Fascicule III.) Livre III. Topologie générale, Chap. 3: Groupes topologiques. Chap. 4: Nombres réels, Actualités Sci. Indust., 1143, 3ème éd., rev. et augm., Hermann, Paris, 1960, 236 pp. ; Chap. V: Groupe à un paramt̀re. Chap. VI: Espaces numériques et espaces projectifs. Chap. VII: Les groupes additifs $R^n$. Chap. VIII: Nombres complexes, Actualités Sci. Indust., 1235, 1963, 151 pp. | MR | Zbl | MR | Zbl | Zbl
[12] J. Diestel, Geometry of Banach spaces – selected topics, Lecture Notes in Math., 485, Springer-Verlag, Berlin–New York, 1975, xi+282 pp. | DOI | MR | MR | Zbl | Zbl
[13] P. Enflo, “Banach spaces which can be given an equivalent uniformly convex norm”, Israel J. Math., 13:3–4 (1972), 281–288 | DOI | MR | Zbl
[14] R. R. Phelps, Lectures on Choquet's theorem, D. Van Nostrand Co., Inc., Princeton, N.J.–Toronto, Ont.–London, 1966, v+130 pp. | MR | Zbl | Zbl
[15] P. A. Borodin, “On the convexity of $N$-Chebyshev sets”, Izv. Math., 75:5 (2011), 889–914 | DOI | DOI | MR | Zbl
[16] W. Banaszczyk, Additive subgroups of topological vector spaces, Lecture Notes in Math., 1466, Springer-Verlag, Berlin, viii+178 pp. | DOI | MR | Zbl
[17] T. Dobrowolski, J. Grabowski, “Subgroups of Hilbert spaces”, Math. Z., 211 (1992), 657–659 | DOI | MR | Zbl
[18] R. Cauty, “Un exemple de sous-groupe additif de l'espace de Hilbert”, Colloq. Math., 77:1 (1998), 147–162 | MR | Zbl
[19] J. Grabowski, “Homotopically non-trivial additive subgroups of Hilbert spaces”, Proc. Amer. Math. Soc., 127:5 (1999), 1563–1565 | DOI | MR | Zbl
[20] V. P. Fonf, “Conditionally convergent series in a uniformly smooth Banach space”, Math. Notes, 11:2 (1972), 129–132 | DOI | MR | Zbl
[21] J. Lindenstrauss, “On the modulus of smoothness and divergent series in Banach spaces”, Michigan Math. J., 10:3 (1963), 241–252 | DOI | MR | Zbl
[22] N. Wiener, The Fourier integral and certain of its applications, University Press, Cambridge, 1933, xii+201 pp. | MR | Zbl | Zbl
[23] O. N. Kosukhin, “Ob odnom svoistve svyaznykh mnozhestv”, Materialy VI Petrozavodskoi mezhdunarodnoi konferentsii “Kompleksnyi analiz i ego prilozheniya” (1–7 iyulya 2012 g.), Izd-vo PetrGU, Petrozavodsk, 2012, 43
[24] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, v. I, Ergeb. Math. Grenzgeb., 92, Sequence spaces, Springer-Verlag, Berlin–New York, 1977, xiii+188 pp. ; v. II, Ergeb. Math. Grenzgeb., 97, Function spaces, 1979, x+243 pp. | MR | Zbl | MR | Zbl
[25] M. A. Lawrentjew, B. W. Schabat, Methoden der komplexen Funktionentheorie, Math. Naturwiss. Tech., 13, VEB Deutscher Verlag der Wissenschaften, Berlin, 1967, x+846 pp. | MR | MR | Zbl | Zbl