Density of a~semigroup in a~Banach space
Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1079-1104.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study conditions on a set $M$ in a Banach space $X$ which are necessary or sufficient for the set $R(M)$ of all sums $x_1+\dots+x_n$, $x_k\in M$, to be dense in $X$. We distinguish conditions under which the closure $\overline{R(M)}$ is an additive subgroup of $X$, and conditions under which this additive subgroup is dense in $X$. In particular, we prove that if $M$ is a closed rectifiable curve in a uniformly convex and uniformly smooth Banach space $X$, and does not lie in a closed half-space $\{x\in X\colon f(x)\geqslant0\}$, $f\in X^*$, and is minimal in the sense that every proper subarc of $M$ lies in an open half-space $\{x\in X\colon f(x)>0\}$, then $\overline{R(M)}=X$. We apply our results to questions of approximation in various function spaces.
Keywords: Banach space, additive semigroup, density, uniformly convex space, modulus of smoothness, approximation
Mots-clés : simple partial fractions.
@article{IM2_2014_78_6_a2,
     author = {P. A. Borodin},
     title = {Density of a~semigroup in {a~Banach} space},
     journal = {Izvestiya. Mathematics },
     pages = {1079--1104},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a2/}
}
TY  - JOUR
AU  - P. A. Borodin
TI  - Density of a~semigroup in a~Banach space
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 1079
EP  - 1104
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a2/
LA  - en
ID  - IM2_2014_78_6_a2
ER  - 
%0 Journal Article
%A P. A. Borodin
%T Density of a~semigroup in a~Banach space
%J Izvestiya. Mathematics 
%D 2014
%P 1079-1104
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a2/
%G en
%F IM2_2014_78_6_a2
P. A. Borodin. Density of a~semigroup in a~Banach space. Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1079-1104. http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a2/

[1] E. Hille, R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., 31, rev. ed., Amer. Math. Soc., Providence, R. I., 1957, xii+808 pp. | MR | MR | Zbl

[2] V. Temlyakov, “Nonlinear methods of approximation”, Found. Comput. Math., 3:1 (2003), 33–107 | DOI | MR | Zbl

[3] A. O. Gelfond, “O ravnomernykh priblizheniyakh mnogochlenami s tselymi ratsionalnymi koeffitsientami”, UMN, 10:1(63) (1955), 41–65 | MR | Zbl

[4] P. A. Borodin, O. N. Kosukhin, “On approximation by the simplest fractions on the real axis”, Moscow Univ. Math. Bull., 60:1 (2005), 1–6 | MR | Zbl

[5] P. A. Borodin, “Estimates of the distances to direct lines and rays from the poles of simplest fractions bounded in the norm of $L_p$ on these sets”, Math. Notes, 82:6 (2007), 725–732 | DOI | DOI | MR | Zbl

[6] P. A. Borodin, “Approximation by simple partial fractions on the semi-axis”, Sb. Math., 200:8 (2009), 1127–1148 | DOI | DOI | MR | Zbl

[7] V. I. Danchenko, D. Ya. Danchenko, “Approximation by simplest fractions”, Math. Notes, 70:4 (2001), 502–507 | DOI | DOI | MR | Zbl

[8] P. A. Borodin, “Approximation by simple partial fractions with constraints on the poles”, Sb. Math., 203:11 (2012), 1553–1570 | DOI | DOI | MR | Zbl

[9] T. Bonnesen, W. Fenchel, Theorie der konvexen Körper, Ergeb. Math. Grenzgeb., 3, Berlin, Springer, 1934 | MR | Zbl

[10] J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics, 45, Cambridge Univ. Press, New York, 1957, x+166 pp. | MR | MR | Zbl | Zbl

[11] N. Burbaki, Obschaya topologiya. Topologicheskie gruppy. Chisla i svyazannye s nimi gruppy i prostranstva, Nauka, M., 1969, 392 pp. ; N. Bourbaki, Éléments de mathématique. Première partie. (Fascicule III.) Livre III. Topologie générale, Chap. 3: Groupes topologiques. Chap. 4: Nombres réels, Actualités Sci. Indust., 1143, 3ème éd., rev. et augm., Hermann, Paris, 1960, 236 pp. ; Chap. V: Groupe à un paramt̀re. Chap. VI: Espaces numériques et espaces projectifs. Chap. VII: Les groupes additifs $R^n$. Chap. VIII: Nombres complexes, Actualités Sci. Indust., 1235, 1963, 151 pp. | MR | Zbl | MR | Zbl | Zbl

[12] J. Diestel, Geometry of Banach spaces – selected topics, Lecture Notes in Math., 485, Springer-Verlag, Berlin–New York, 1975, xi+282 pp. | DOI | MR | MR | Zbl | Zbl

[13] P. Enflo, “Banach spaces which can be given an equivalent uniformly convex norm”, Israel J. Math., 13:3–4 (1972), 281–288 | DOI | MR | Zbl

[14] R. R. Phelps, Lectures on Choquet's theorem, D. Van Nostrand Co., Inc., Princeton, N.J.–Toronto, Ont.–London, 1966, v+130 pp. | MR | Zbl | Zbl

[15] P. A. Borodin, “On the convexity of $N$-Chebyshev sets”, Izv. Math., 75:5 (2011), 889–914 | DOI | DOI | MR | Zbl

[16] W. Banaszczyk, Additive subgroups of topological vector spaces, Lecture Notes in Math., 1466, Springer-Verlag, Berlin, viii+178 pp. | DOI | MR | Zbl

[17] T. Dobrowolski, J. Grabowski, “Subgroups of Hilbert spaces”, Math. Z., 211 (1992), 657–659 | DOI | MR | Zbl

[18] R. Cauty, “Un exemple de sous-groupe additif de l'espace de Hilbert”, Colloq. Math., 77:1 (1998), 147–162 | MR | Zbl

[19] J. Grabowski, “Homotopically non-trivial additive subgroups of Hilbert spaces”, Proc. Amer. Math. Soc., 127:5 (1999), 1563–1565 | DOI | MR | Zbl

[20] V. P. Fonf, “Conditionally convergent series in a uniformly smooth Banach space”, Math. Notes, 11:2 (1972), 129–132 | DOI | MR | Zbl

[21] J. Lindenstrauss, “On the modulus of smoothness and divergent series in Banach spaces”, Michigan Math. J., 10:3 (1963), 241–252 | DOI | MR | Zbl

[22] N. Wiener, The Fourier integral and certain of its applications, University Press, Cambridge, 1933, xii+201 pp. | MR | Zbl | Zbl

[23] O. N. Kosukhin, “Ob odnom svoistve svyaznykh mnozhestv”, Materialy VI Petrozavodskoi mezhdunarodnoi konferentsii “Kompleksnyi analiz i ego prilozheniya” (1–7 iyulya 2012 g.), Izd-vo PetrGU, Petrozavodsk, 2012, 43

[24] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, v. I, Ergeb. Math. Grenzgeb., 92, Sequence spaces, Springer-Verlag, Berlin–New York, 1977, xiii+188 pp. ; v. II, Ergeb. Math. Grenzgeb., 97, Function spaces, 1979, x+243 pp. | MR | Zbl | MR | Zbl

[25] M. A. Lawrentjew, B. W. Schabat, Methoden der komplexen Funktionentheorie, Math. Naturwiss. Tech., 13, VEB Deutscher Verlag der Wissenschaften, Berlin, 1967, x+846 pp. | MR | MR | Zbl | Zbl