Homology of some surfaces with $p_g = q = 0$ isogenous to a~product
Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1261-1270.

Voir la notice de l'article provenant de la source Math-Net.Ru

Bauer and Catanese found four families of surfaces of general type with $p_g=q=0$, each of which is the quotient of a product of curves by the action of a finite Abelian group. We compute the integral cohomology groups of these surfaces.
Keywords: surfaces of general type, surfaces isogenous to a product, fake quadrics, branched coverings, fundamental group, homology groups.
@article{IM2_2014_78_6_a11,
     author = {T. I. Shabalin},
     title = {Homology of some surfaces with $p_g = q = 0$ isogenous to a~product},
     journal = {Izvestiya. Mathematics },
     pages = {1261--1270},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a11/}
}
TY  - JOUR
AU  - T. I. Shabalin
TI  - Homology of some surfaces with $p_g = q = 0$ isogenous to a~product
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 1261
EP  - 1270
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a11/
LA  - en
ID  - IM2_2014_78_6_a11
ER  - 
%0 Journal Article
%A T. I. Shabalin
%T Homology of some surfaces with $p_g = q = 0$ isogenous to a~product
%J Izvestiya. Mathematics 
%D 2014
%P 1261-1270
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a11/
%G en
%F IM2_2014_78_6_a11
T. I. Shabalin. Homology of some surfaces with $p_g = q = 0$ isogenous to a~product. Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1261-1270. http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a11/

[1] Y. Miyaoka, “On the Chern numbers of surfaces of general type”, Invent. Math., 42 (1977), 225–237 | DOI | MR | Zbl

[2] S.-T. Yau, “Calabi's conjecture and some new results in algebraic geometry”, Proc. Nat. Acad. Sci. U.S.A., 74:5 (1977), 1798–1799 | DOI | MR | Zbl

[3] S.-T. Yau, “On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I”, Comm. Pure Appl. Math., 31:3 (1978), 339–411 | DOI | MR | Zbl

[4] Y. Miyaoka, “Algebraic surfaces with positive indices”, Classification of algebraic and analytic manifolds (Katata, 1982), Progr. Math., 39, Birkhäuser, Boston, MA, 1983, 281–301 | MR | Zbl

[5] G. Prasad, S. Yeung, “Fake projective planes”, Invent. Math., 168:2 (2007), 321–370 | DOI | MR | Zbl

[6] G. Prasad, S. Yeung, Addendum to “Fake projective planes”, arXiv: 0906.4932

[7] D. I. Cartwright, T. Steger, “Enumeration of the 50 fake projective planes”, C. R. Math. Acad. Sci. Paris, 348:1–2 (2010), 11–13 | DOI | MR | Zbl

[8] I. Bauer, F. Catanese, R. Pignatelli, “Surfaces of general type with geometric genus zero: a survey”, Complex and differential geometry, Springer Proc. Math., 8, Springer-Verlag, Heidelberg, 2011, 1–48 | DOI | MR | Zbl

[9] I. Bauer, F. Catanese, F. Grunewald, “The classification of surfaces with $p_g=q=0$ isogenous to a product of curves”, Pure Appl. Math. Q., 4:2 (2008), 547–586 | DOI | Zbl

[10] I. Bauer, F. Catanese, “Some new surfaces with $p_g=q=0$”, The Fano conference, Univ. Torino, Turin, 2004, 123–142 | MR | Zbl

[11] S. Galkin, E. Shinder, “Exceptional collections of line bundles on the Beauville surface”, Adv. in Math., 244 (2013), 1033–1050 | DOI | MR | Zbl

[12] K.-S. Lee, Derived categories of surfaces isogenous to a higher product, arXiv: 1303.0541

[13] K.-S. Lee, Exceptional sequences of maximal length on some surfaces isogenous to a higher product, arXiv: 1311.5839

[14] F. Catanese, “Fibred surfaces, varieties isogenous to a product and related moduli spaces”, Am. J. of Math., 122 (2000), 1–44 | DOI | MR | Zbl

[15] I. Bauer, F. Catanese, D. Frapporti, The fundamental group and torsion group of Beauville surfaces, arXiv: 1402.2109

[16] C. Weibel, An introduction to homological algebra, Cambridge Stud. Adv. Math., Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl