Homology of some surfaces with $p_g = q = 0$ isogenous to a~product
Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1261-1270

Voir la notice de l'article provenant de la source Math-Net.Ru

Bauer and Catanese found four families of surfaces of general type with $p_g=q=0$, each of which is the quotient of a product of curves by the action of a finite Abelian group. We compute the integral cohomology groups of these surfaces.
Keywords: surfaces of general type, surfaces isogenous to a product, fake quadrics, branched coverings, fundamental group, homology groups.
@article{IM2_2014_78_6_a11,
     author = {T. I. Shabalin},
     title = {Homology of some surfaces with $p_g = q = 0$ isogenous to a~product},
     journal = {Izvestiya. Mathematics },
     pages = {1261--1270},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a11/}
}
TY  - JOUR
AU  - T. I. Shabalin
TI  - Homology of some surfaces with $p_g = q = 0$ isogenous to a~product
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 1261
EP  - 1270
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a11/
LA  - en
ID  - IM2_2014_78_6_a11
ER  - 
%0 Journal Article
%A T. I. Shabalin
%T Homology of some surfaces with $p_g = q = 0$ isogenous to a~product
%J Izvestiya. Mathematics 
%D 2014
%P 1261-1270
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a11/
%G en
%F IM2_2014_78_6_a11
T. I. Shabalin. Homology of some surfaces with $p_g = q = 0$ isogenous to a~product. Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1261-1270. http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a11/