On the arithmetic properties of generalized hypergeometric series with irrational parameters
Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1244-1260.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of an infinite set of primes $p$ such that the generalized hypergeometric series with irrational parameters in a number field $\mathbb{K}$ is not equal to zero in the algebraic extension $\mathbb{K}_v$ of the field of $p$-adic numbers, where $v$ is an extension of the $p$-adic valuation to $\mathbb{K}$.
Keywords: generalized hypergeometric series, irrational numbers, $p$-adic numbers.
@article{IM2_2014_78_6_a10,
     author = {V. G. Chirskii},
     title = {On the arithmetic properties of generalized hypergeometric series with irrational parameters},
     journal = {Izvestiya. Mathematics },
     pages = {1244--1260},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a10/}
}
TY  - JOUR
AU  - V. G. Chirskii
TI  - On the arithmetic properties of generalized hypergeometric series with irrational parameters
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 1244
EP  - 1260
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a10/
LA  - en
ID  - IM2_2014_78_6_a10
ER  - 
%0 Journal Article
%A V. G. Chirskii
%T On the arithmetic properties of generalized hypergeometric series with irrational parameters
%J Izvestiya. Mathematics 
%D 2014
%P 1244-1260
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a10/
%G en
%F IM2_2014_78_6_a10
V. G. Chirskii. On the arithmetic properties of generalized hypergeometric series with irrational parameters. Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1244-1260. http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a10/

[1] A. G. Postnikov, Introduction to analytic number theory, Transl. Math. Monogr., 68, Amer. Math. Soc., Providence, RI, 1988, vi+320 pp. | MR | MR | Zbl | Zbl

[2] D. Kurepa, “On the left factorial function $n!$”, Math. Balkanica, 1 (1971), 147–153 | MR | Zbl

[3] V. S. Vladimirov, “Levye faktorialy, chisla Bernulli i gipoteza Kurepy”, Publ. Inst. Math. (Beograd) (N.S.), 72:86 (2002), 11–22 | DOI | MR | Zbl

[4] D. Bertrand, V. Chirskii, J. Yebbou, “Effective estimates for global relations on Euler-type series”, Ann. Fac. Sci. Toulouse Math. (6), 13:2 (2004), 241–260 | DOI | MR | Zbl

[5] A. B. Shidlovskii, Transcendental numbers, De Gruyter Stud. Math., 12, Walter de Gruyter Co., Berlin, 1989, xx+466 pp. | MR | MR | Zbl | Zbl

[6] A. I. Galochkin, “Hypergeometric Siegel functions and $E$-functions”, Math. Notes, 29:1 (1981), 3–8 | DOI | MR | Zbl

[7] V. G. Sprindzhuk, “The irrationality of the values of certain transcendental functions”, Math. USSR-Izv., 2:1 (1968), 89–104 | DOI | MR | Zbl

[8] A. I. Galochkin, “A lower bound for linear forms in values of certain hypergeometric functions”, Math. Notes, 8:1 (1970), 478–484 | DOI | MR | Zbl

[9] A. I. Galochkin, “The arithmetic properties of the values of some entire hypergeometric functions”, Siberian Math. J., 17:6 (1976), 894–906 | MR | Zbl

[10] P. L. Ivankov, “On linear independence of the values of entire hypergeometric functions with irrational parameters”, Siberian Math. J., 34:5 (1993), 839–847 | DOI | MR | Zbl

[11] P. L. Ivankov, “On estimates of degrees of linear independence for some numbers”, Math. Notes, 55:3 (1994), 277–283 | DOI | MR | Zbl

[12] P. L. Ivankov, “O lineinoi nezavisimosti znachenii nekotorykh funktsii”, Fundament. i prikl. matem., 1:1 (1995), 191–206 | MR | Zbl

[13] Yu. V. Nesterenko, “Hermite–Padé approximants of generalized hypergeometric functions”, Russian Acad. Sci. Sb. Math., 83:1 (1995), 189–219 | DOI | MR | Zbl

[14] E. C. Titchmarsh, The theory of functions, 2nd ed., Oxford Univ. Press, London, 1939, x+454 pp. | MR | Zbl | Zbl