Implicit ordinary differential equations: bifurcations and sharpening of equivalence
Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1063-1078

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a formal classification of generic local bifurcations of an implicit ordinary differential equation at its singular points as a single external parameter varies. This classification consists of four normal forms, each containing a functional invariant. We prove that every deformation in the contact equivalence class of an equation germ which remains quadratic in the derivative can be obtained by a deformation of the independent and dependent variables. Our classification is based on a generalization of this result for families of equations. As an application, we obtain a formal classification of generic local bifurcations on the plane for a linear second-order partial differential equation of mixed type at the points where the domains of ellipticity and hyperbolicity undergo Morse bifurcations.
Keywords: implicit ordinary differential equation, normal form, linear equation of mixed type, characteristic, contact equivalence, generating function of a contact vector field.
Mots-clés : formal change of variables, bifurcation
@article{IM2_2014_78_6_a1,
     author = {I. A. Bogaevsky},
     title = {Implicit ordinary differential equations: bifurcations and sharpening of equivalence},
     journal = {Izvestiya. Mathematics },
     pages = {1063--1078},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a1/}
}
TY  - JOUR
AU  - I. A. Bogaevsky
TI  - Implicit ordinary differential equations: bifurcations and sharpening of equivalence
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 1063
EP  - 1078
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a1/
LA  - en
ID  - IM2_2014_78_6_a1
ER  - 
%0 Journal Article
%A I. A. Bogaevsky
%T Implicit ordinary differential equations: bifurcations and sharpening of equivalence
%J Izvestiya. Mathematics 
%D 2014
%P 1063-1078
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a1/
%G en
%F IM2_2014_78_6_a1
I. A. Bogaevsky. Implicit ordinary differential equations: bifurcations and sharpening of equivalence. Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1063-1078. http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a1/