Implicit ordinary differential equations: bifurcations and sharpening of equivalence
Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1063-1078.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a formal classification of generic local bifurcations of an implicit ordinary differential equation at its singular points as a single external parameter varies. This classification consists of four normal forms, each containing a functional invariant. We prove that every deformation in the contact equivalence class of an equation germ which remains quadratic in the derivative can be obtained by a deformation of the independent and dependent variables. Our classification is based on a generalization of this result for families of equations. As an application, we obtain a formal classification of generic local bifurcations on the plane for a linear second-order partial differential equation of mixed type at the points where the domains of ellipticity and hyperbolicity undergo Morse bifurcations.
Keywords: implicit ordinary differential equation, normal form, linear equation of mixed type, characteristic, contact equivalence, generating function of a contact vector field.
Mots-clés : formal change of variables, bifurcation
@article{IM2_2014_78_6_a1,
     author = {I. A. Bogaevsky},
     title = {Implicit ordinary differential equations: bifurcations and sharpening of equivalence},
     journal = {Izvestiya. Mathematics },
     pages = {1063--1078},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a1/}
}
TY  - JOUR
AU  - I. A. Bogaevsky
TI  - Implicit ordinary differential equations: bifurcations and sharpening of equivalence
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 1063
EP  - 1078
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a1/
LA  - en
ID  - IM2_2014_78_6_a1
ER  - 
%0 Journal Article
%A I. A. Bogaevsky
%T Implicit ordinary differential equations: bifurcations and sharpening of equivalence
%J Izvestiya. Mathematics 
%D 2014
%P 1063-1078
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a1/
%G en
%F IM2_2014_78_6_a1
I. A. Bogaevsky. Implicit ordinary differential equations: bifurcations and sharpening of equivalence. Izvestiya. Mathematics , Tome 78 (2014) no. 6, pp. 1063-1078. http://geodesic.mathdoc.fr/item/IM2_2014_78_6_a1/

[1] J. W. Bruce, G. J. Fletcher, F. Tari, “Bifurcations of implicit differential equations”, Proc. Roy. Soc. Edinburgh Sect. A, 130:3 (2000), 485–506 | MR | Zbl

[2] M. Cibrario, “Sulla riduzione a forma canonica delle equazioni lineari alle derivate parziali di secondo ordine di tipo misto”, Rendiconti del R. Insituto Lombardo, Ser. II, 65 (1932), 889–906 | Zbl

[3] A. A. Davydov, “Normalnaya forma differentsialnogo uravneniya, ne razreshennogo otnositelno proizvodnoi, v okrestnosti ego osoboi tochki”, Funkts. analiz i ego pril., 19:2 (1985), 1–10 | MR | Zbl

[4] A. A. Davydov, E. Rosales-Gonsales, “Polnaya klassifikatsiya tipichnykh lineinykh differentsialnykh uravnenii vtorogo poryadka s chastnymi proizvodnymi na ploskosti”, Dokl. RAN, 350:2 (1996), 151–154 | MR | Zbl

[5] V. I. Arnold, A. B. Givental, “Simplekticheskaya geometriya”, Dinamicheskie sistemy – 4, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 4, VINITI, M., 1985, 5–135 | MR | Zbl

[6] A. B. Givental, “Osobye lagranzhevy mnogoobraziya i ikh lagranzhevy otobrazheniya”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 33, VINITI, M., 1988, 55–112 ; A. B. Givental', “Singular Lagrangian manifolds and their Lagrangian mappings”, J. Soviet Math., 52:4 (1990), 3246–3278 | MR | Zbl | DOI

[7] V. I. Arnold, “O poverkhnostyakh, opredelyaemykh giperbolicheskimi uravneniyami”, Matem. zametki, 44:1 (1988), 3–18 | MR | Zbl

[8] A. O. Remizov, “Mnogomernaya konstruktsiya Puankare i osobennosti podnyatykh polei dlya neyavnykh differentsialnykh uravnenii”, Optimalnoe upravlenie, SMFN, 19, RUDN, M., 2006, 131–170 ; A. O. Remizov, “Multidimensional Poincaré construction and singularities of lifted fields for implicit differential equations”, Journal of Mathematical Sciences, 151:6 (2008), 3561–3602 | MR | Zbl | DOI

[9] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii, v. I, Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982, 304 pp. ; V. I. Arnol'd, S. M. Guseĭn-Zade, A. N. Varchenko, Singularities of differentiable maps, v. I, Monogr. Math., 82, The classification of critical points, caustics and wave fronts, Birkhäuser Boston, Inc., Boston, MA, 1985, xi+382 pp. | MR | Zbl | MR | Zbl

[10] A. A. Davydov, L. Chin Tkhi Ziep, “Normalnye formy semeistv lineinykh uravnenii smeshannogo tipa vblizi nerezonansnykh slozhennykh osobykh tochek”, UMN, 65:5(395) (2010), 189–190 | DOI | MR | Zbl