Pseudoconvex non-Stein domains in primary Hopf surfaces
Izvestiya. Mathematics , Tome 78 (2014) no. 5, pp. 1028-1035.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe pseudoconvex non-Stein domains in primary Hopf surfaces using techniques developed by Hirschowitz.
Keywords: Hopf surfaces, Levi problem.
Mots-clés : pseudoconvex domains
@article{IM2_2014_78_5_a7,
     author = {Ch. Miebach},
     title = {Pseudoconvex {non-Stein} domains in primary {Hopf} surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {1028--1035},
     publisher = {mathdoc},
     volume = {78},
     number = {5},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a7/}
}
TY  - JOUR
AU  - Ch. Miebach
TI  - Pseudoconvex non-Stein domains in primary Hopf surfaces
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 1028
EP  - 1035
VL  - 78
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a7/
LA  - en
ID  - IM2_2014_78_5_a7
ER  - 
%0 Journal Article
%A Ch. Miebach
%T Pseudoconvex non-Stein domains in primary Hopf surfaces
%J Izvestiya. Mathematics 
%D 2014
%P 1028-1035
%V 78
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a7/
%G en
%F IM2_2014_78_5_a7
Ch. Miebach. Pseudoconvex non-Stein domains in primary Hopf surfaces. Izvestiya. Mathematics , Tome 78 (2014) no. 5, pp. 1028-1035. http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a7/

[1] N. Levenberg, H. Yamaguchi, Pseudoconvex domains in the {H}opf surface, arXiv: 1205.3346

[2] A. Hirschowitz, “Pseudoconvexité au-dessus d'espaces plus ou moins homogènes”, Invent. Math., 26:4 (1974), 303–322 | DOI | MR | Zbl

[3] A. Hirschowitz, “Le problème de {L}évi pour les espaces homogènes”, Bull. Soc. Math. France, 103:2 (1975), 191–201 | MR | Zbl

[4] W. P. Barth, K. Hulek, C. A. M. Peters, A. Van de Ven, Compact complex surfaces, Ergeb. Math. Grenzgeb. (3), 4, 2nd ed., Springer-Verlag, Berlin, 2004, xii+436 pp. | MR | Zbl

[5] P. Lelong, Fonctionnelles analytiques et fonctions entières ($n$ variables) (Été, 1967), Séminaire de mathématiques supérieures, 28, Les Presses de l'Université de Montréal, Montreal, Que., 1968, 298 pp. | MR | Zbl

[6] K. Diederich, J. E. Fornæss, “A smooth pseudoconvex domain without pseudoconvex exhaustion”, Manuscripta Math., 39:1 (1982), 119–123 | DOI | MR | Zbl

[7] A. T. Huckleberry, “Remarks on homogeneous complex manifolds satisfying Levi conditions”, Boll. Unione Mat. Ital. (9), 3:1 (2010), 1–23 | MR | Zbl

[8] B. Gilligan, C. Miebach, K. Oeljeklaus, “Pseudoconvex domains spread over complex homogeneous manifolds”, Manuscripta Math., 142:1-2 (2013), 35–59 | DOI | MR | Zbl

[9] R. Richberg, “Stetige streng pseudokonvexe {F}unktionen”, Math. Ann., 175:4 (1968), 257–286 | DOI | MR | Zbl

[10] J.-P. Demailly, Complex analytic and differential geometry, 2012, 455 pp. http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf

[11] Yum Tong Siu, “Every {S}tein subvariety admits a {S}tein neighborhood”, Invent. Math., 38:1 (1976/77), 89–100 | DOI | MR | Zbl

[12] R. Narasimhan, “The {L}evi problem for complex spaces. {II}”, Math. Ann., 146:3 (1962), 195–216 | DOI | MR | Zbl

[13] R. C. Gunning, H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965, xiv+317 pp. | MR | MR | Zbl | Zbl