Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2014_78_5_a6, author = {L. V. Lokutsievskii}, title = {Singular regimes in controlled systems with multidimensional control in a~polyhedron}, journal = {Izvestiya. Mathematics }, pages = {1006--1027}, publisher = {mathdoc}, volume = {78}, number = {5}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a6/} }
TY - JOUR AU - L. V. Lokutsievskii TI - Singular regimes in controlled systems with multidimensional control in a~polyhedron JO - Izvestiya. Mathematics PY - 2014 SP - 1006 EP - 1027 VL - 78 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a6/ LA - en ID - IM2_2014_78_5_a6 ER -
L. V. Lokutsievskii. Singular regimes in controlled systems with multidimensional control in a~polyhedron. Izvestiya. Mathematics , Tome 78 (2014) no. 5, pp. 1006-1027. http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a6/
[1] H. J. Kelley, R. E. Kopp, H. G. Moyer, “Singular extremals”, Topics in optimization, Academic Press, New York, 1967, 63–101 | MR
[2] M. I. Zelikin, V. F. Borisov, “Singular optimal regimes in problems of mathematical economics”, J. Math. Sci. (N. Y.), 130:1 (2005), 4409–4570 | DOI | MR | Zbl
[3] M. I. Zelikin, V. F. Borisov, “Theory of chattering control with applications to astronautics robotics, economics, and engineering”, Systems Control Found. Appl., Birkhäuser Boston, Inc., Boston, MA, 1994, xvi+242 pp. | DOI | MR | Zbl
[4] M. I. Zelikin, L. V. Lokutsievskiy, R. Hildebrand, “Geometry of neighborhoods of singular trajectories in problems with multidimensional control”, Proc. Steklov Inst. Math., 277:1 (2012), 67–83 | DOI | MR
[5] L. F. Zelikina, M. I. Zelikin, K. V. Khlyustov, “Singular stratified manifolds for involutive controlled systems”, Differ. Equ., 37:9 (2001), 1217–1223 | DOI | MR | Zbl
[6] V. I. Arnol'd, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, Springer-Verlag, New York–Heidelberg, 1978, x+462 pp. | MR | MR | Zbl | Zbl
[7] A. J. Krener, “The high order maximal principle and its application to singular extremals”, SIAM J. Control Optimization, 15:2 (1977), 256–293 | DOI | MR | Zbl
[8] R. M. Lewis, “Definitions of order and junction condition in singular optimal control problems”, SIAM J. Control Optim., 18:1 (1980), 21–32 | DOI | MR | Zbl
[9] A. A. Agrachev, Yu. L. Sachkov, Control theory from the geometric viewpoint, Springer-Verlag, Berlin, 2004, xiv+412 pp. | MR | Zbl
[10] A. V. Dmitruk, “Quadratic conditions for a Pontryagin minimum in an optimum control problem linear in the control. I. A decoding theorem”, Math. USSR-Izv., 28:2 (1987), 275–303 | DOI | MR | Zbl
[11] A. V. Dmitruk, “Quadratic order conditions of a local minimum for singular extremals in a general optimal control problem”, Differential geometry and control (Boulder, CO, 1997), Proc. Sympos. Pure Math., 64, Amer. Math. Soc., Providence, RI, 1999, 163–198 | MR | Zbl