Singular regimes in controlled systems with multidimensional control in a~polyhedron
Izvestiya. Mathematics , Tome 78 (2014) no. 5, pp. 1006-1027.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study Hamiltonian systems that are affine in a multidimensional control varying in a polyhedron $\Omega$. Quite often, a crucial role in the study of the global behaviour of solutions of such systems is played by special trajectories and the geometry of their neighbourhoods. We prove a theorem on the structure of the output of optimal trajectories to a first-order singular trajectory in a neighbourhood of this trajectory (and of the exit from it) for systems with holonomic control. We also prove that in a neighbourhood of a first-order singular trajectory, a Lagrangian surface is woven in a special way from the trajectories of the system that are singular with respect to the faces of $\Omega$. We suggest a simple way to find explicitly first-order special trajectories with respect to the faces of $\Omega$. As a result, we describe a complete picture of the optimal synthesis obtained by the successive conjugation of first-order singular extremals.
Keywords: optimal control, singular trajectories, multidimensional control, optimal synthesis.
@article{IM2_2014_78_5_a6,
     author = {L. V. Lokutsievskii},
     title = {Singular regimes in controlled systems with multidimensional control in a~polyhedron},
     journal = {Izvestiya. Mathematics },
     pages = {1006--1027},
     publisher = {mathdoc},
     volume = {78},
     number = {5},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a6/}
}
TY  - JOUR
AU  - L. V. Lokutsievskii
TI  - Singular regimes in controlled systems with multidimensional control in a~polyhedron
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 1006
EP  - 1027
VL  - 78
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a6/
LA  - en
ID  - IM2_2014_78_5_a6
ER  - 
%0 Journal Article
%A L. V. Lokutsievskii
%T Singular regimes in controlled systems with multidimensional control in a~polyhedron
%J Izvestiya. Mathematics 
%D 2014
%P 1006-1027
%V 78
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a6/
%G en
%F IM2_2014_78_5_a6
L. V. Lokutsievskii. Singular regimes in controlled systems with multidimensional control in a~polyhedron. Izvestiya. Mathematics , Tome 78 (2014) no. 5, pp. 1006-1027. http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a6/

[1] H. J. Kelley, R. E. Kopp, H. G. Moyer, “Singular extremals”, Topics in optimization, Academic Press, New York, 1967, 63–101 | MR

[2] M. I. Zelikin, V. F. Borisov, “Singular optimal regimes in problems of mathematical economics”, J. Math. Sci. (N. Y.), 130:1 (2005), 4409–4570 | DOI | MR | Zbl

[3] M. I. Zelikin, V. F. Borisov, “Theory of chattering control with applications to astronautics robotics, economics, and engineering”, Systems Control Found. Appl., Birkhäuser Boston, Inc., Boston, MA, 1994, xvi+242 pp. | DOI | MR | Zbl

[4] M. I. Zelikin, L. V. Lokutsievskiy, R. Hildebrand, “Geometry of neighborhoods of singular trajectories in problems with multidimensional control”, Proc. Steklov Inst. Math., 277:1 (2012), 67–83 | DOI | MR

[5] L. F. Zelikina, M. I. Zelikin, K. V. Khlyustov, “Singular stratified manifolds for involutive controlled systems”, Differ. Equ., 37:9 (2001), 1217–1223 | DOI | MR | Zbl

[6] V. I. Arnol'd, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, Springer-Verlag, New York–Heidelberg, 1978, x+462 pp. | MR | MR | Zbl | Zbl

[7] A. J. Krener, “The high order maximal principle and its application to singular extremals”, SIAM J. Control Optimization, 15:2 (1977), 256–293 | DOI | MR | Zbl

[8] R. M. Lewis, “Definitions of order and junction condition in singular optimal control problems”, SIAM J. Control Optim., 18:1 (1980), 21–32 | DOI | MR | Zbl

[9] A. A. Agrachev, Yu. L. Sachkov, Control theory from the geometric viewpoint, Springer-Verlag, Berlin, 2004, xiv+412 pp. | MR | Zbl

[10] A. V. Dmitruk, “Quadratic conditions for a Pontryagin minimum in an optimum control problem linear in the control. I. A decoding theorem”, Math. USSR-Izv., 28:2 (1987), 275–303 | DOI | MR | Zbl

[11] A. V. Dmitruk, “Quadratic order conditions of a local minimum for singular extremals in a general optimal control problem”, Differential geometry and control (Boulder, CO, 1997), Proc. Sympos. Pure Math., 64, Amer. Math. Soc., Providence, RI, 1999, 163–198 | MR | Zbl