On numerically pluricanonical cyclic coverings
Izvestiya. Mathematics , Tome 78 (2014) no. 5, pp. 986-1005

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate some properties of cyclic coverings $f\colon Y\to X$ (where $X$ is a complex surface of general type) branched along smooth curves $B\subset X$ that are numerically equivalent to a multiple of the canonical class of $X$. Our main results concern coverings of surfaces of general type with $p_g=0$ and Miyaoka–Yau surfaces. In particular, such coverings provide new examples of multi-component moduli spaces of surfaces with given Chern numbers and new examples of surfaces that are not deformation equivalent to their complex conjugates.
Keywords: numerically pluricanonical cyclic coverings of surfaces, irreducible components of moduli spaces of surfaces.
@article{IM2_2014_78_5_a5,
     author = {Vik. S. Kulikov and V. M. Kharlamov},
     title = {On numerically pluricanonical cyclic coverings},
     journal = {Izvestiya. Mathematics },
     pages = {986--1005},
     publisher = {mathdoc},
     volume = {78},
     number = {5},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a5/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
AU  - V. M. Kharlamov
TI  - On numerically pluricanonical cyclic coverings
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 986
EP  - 1005
VL  - 78
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a5/
LA  - en
ID  - IM2_2014_78_5_a5
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%A V. M. Kharlamov
%T On numerically pluricanonical cyclic coverings
%J Izvestiya. Mathematics 
%D 2014
%P 986-1005
%V 78
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a5/
%G en
%F IM2_2014_78_5_a5
Vik. S. Kulikov; V. M. Kharlamov. On numerically pluricanonical cyclic coverings. Izvestiya. Mathematics , Tome 78 (2014) no. 5, pp. 986-1005. http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a5/