On numerically pluricanonical cyclic coverings
Izvestiya. Mathematics , Tome 78 (2014) no. 5, pp. 986-1005
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate some properties of cyclic coverings $f\colon Y\to X$
(where $X$ is a complex surface of general type) branched along smooth curves
$B\subset X$ that are numerically equivalent to a multiple of the canonical
class of $X$. Our main results concern coverings of surfaces of general type
with $p_g=0$ and Miyaoka–Yau surfaces. In particular, such coverings provide
new examples of multi-component moduli spaces of surfaces with given Chern
numbers and new examples of surfaces that are not deformation equivalent
to their complex conjugates.
Keywords:
numerically pluricanonical cyclic coverings of surfaces,
irreducible components of moduli spaces of surfaces.
@article{IM2_2014_78_5_a5,
author = {Vik. S. Kulikov and V. M. Kharlamov},
title = {On numerically pluricanonical cyclic coverings},
journal = {Izvestiya. Mathematics },
pages = {986--1005},
publisher = {mathdoc},
volume = {78},
number = {5},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a5/}
}
Vik. S. Kulikov; V. M. Kharlamov. On numerically pluricanonical cyclic coverings. Izvestiya. Mathematics , Tome 78 (2014) no. 5, pp. 986-1005. http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a5/