Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2014_78_5_a5, author = {Vik. S. Kulikov and V. M. Kharlamov}, title = {On numerically pluricanonical cyclic coverings}, journal = {Izvestiya. Mathematics }, pages = {986--1005}, publisher = {mathdoc}, volume = {78}, number = {5}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a5/} }
Vik. S. Kulikov; V. M. Kharlamov. On numerically pluricanonical cyclic coverings. Izvestiya. Mathematics , Tome 78 (2014) no. 5, pp. 986-1005. http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a5/
[1] Vik. S. Kulikov, V. M. Kharlamov, “On real structures on rigid surfaces”, Izv. Math., 66:1 (2002), 133–150 | DOI | DOI | MR | Zbl
[2] M. Manetti, “On the moduli space of diffeomorphic algebraic surfaces”, Invent. Math., 143:1 (2001), 29–76 | DOI | MR | Zbl
[3] V. Kharlamov, Vik. S. Kulikov, “Deformation inequivalent complex conjugated complex structures and applications”, Turkish J. Math., 26:1 (2002), 1–25 | MR | Zbl
[4] F. Catanese, “Moduli spaces of surfaces and real structures”, Ann. of Math. (2), 158:2 (2003), 577–592 | DOI | MR | Zbl
[5] Vik. S. Kulikov, V. M. Kharlamov, “Surfaces with $\operatorname{DIF}\ne\operatorname{DEF}$ real structures”, Izv. Math., 70:4 (2006), 769–807 | DOI | DOI | MR | Zbl
[6] M. V. Nori, “Zariski's conjecture and related problems”, Ann. Sci. École Norm. Sup. (4), 16:2 (1983), 305–344 | MR | Zbl
[7] E. Bombieri, “Canonical models of surfaces of general type”, Inst. Hautes Études Sci. Publ. Math., 42:1 (1973), 171–219 | DOI | MR | Zbl
[8] W. P. Barth, K. Hulek, C. A. M. Peters, A. Van de Ven, Compact complex surfaces, Ergeb. Math. Grenzgeb. (3), 4, 2nd ed., Springer-Verlag, Berlin, 2004, xii+436 pp. | MR | Zbl
[9] I. Reider, “Vector bundles of rank 2 and linear systems on algebraic surfaces”, Ann. of Math. (2), 127:2 (1988), 309–316 | DOI | MR | Zbl
[10] Vik. S. Kulikov, “Old and new examples of surfaces of general type with $p_g=0$”, Izv. Math., 68:5 (2004), 965–1008 | DOI | DOI | MR | Zbl
[11] D. Mumford, Lectures on curves on an algebraic surface, Ann. of Math. Stud., 59, Princeton Univ. Press, Princeton, N.J., 1966, xi+200 pp. | MR | Zbl | Zbl
[12] D. Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5, Oxford Univ. Press, London, 1970, viii+242 pp. | MR | Zbl | Zbl
[13] I. Bauer, F. Catanese, R. Pignatelli, “Surfaces of general type with geometric genus zero: a survey”, Complex and differntial geometry, Springer Proc. Math., 8, Springer, Heidelberg, 2011, 1–48 | DOI | MR | Zbl
[14] P. Burniat, “Sur les surfaces de genre $P_{12}>1$”, Ann. Mat. Pura Appl. (4), 71:1 (1966), 1–24 | DOI | MR | Zbl
[15] M. Mendes Lopes, R. Pardini, “A new family of surfaces with $p_{g}=0$ and $K^2=3$”, Ann. Sci. École Norm. Sup. (4), 37:4 (2004), 507–531 | DOI | MR | Zbl
[16] G. D. Mostow, Strong rigidity of locally symmetric spaces, Ann. of Math. Stud., 78, Princeton Univ. Press, Princeton, N.J.; Univ. of Tokyo Press, Tokyo, 1973, v+195 pp. | MR | Zbl
[17] M. Gromov, P. Pansu, “Rigidity of lattices: an introduction”, Geometric topology: recent developments (Montecatini Terme, 1990), Lect. Notes in Math., 1504, Springer, Berlin, 1991, 39–137 | DOI | MR | Zbl
[18] E. Witten, “Monopoles and four-manifolds”, Math. Res. Lett., 1:6 (1994), 769–796 | DOI | MR | Zbl
[19] R. Brussee, “The canonical class and the $C^\infty$-properties of Kähler surfaces”, New York J. Math., 2 (1996), 103–146 (electronic) | MR | Zbl
[20] Yum-Tong Siu, “The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds”, Ann. of Math. (2), 112:1 (1980), 73–111 | DOI | MR | Zbl