Blow-up of solutions of an abstract Cauchy problem for a~formally hyperbolic equation with double non-linearity
Izvestiya. Mathematics , Tome 78 (2014) no. 5, pp. 937-985.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an abstract Cauchy problem for a formally hyperbolic equation with double non-linearity. Under certain conditions on the operators in the equation, we prove its local (in time) solubility and give sufficient conditions for finite-time blow-up of solutions of the corresponding abstract Cauchy problem. The proof uses a modification of a method of Levine. We give examples of Cauchy problems and initial-boundary value problems for concrete non-linear equations of mathematical physics.
Keywords: finite-time blow-up, generalized Klein–Gordon equations, non-linear hyperbolic equations, non-linear mixed boundary-value problems, field theory.
@article{IM2_2014_78_5_a4,
     author = {M. O. Korpusov and A. A. Panin},
     title = {Blow-up of solutions of an abstract {Cauchy} problem for a~formally hyperbolic equation with double non-linearity},
     journal = {Izvestiya. Mathematics },
     pages = {937--985},
     publisher = {mathdoc},
     volume = {78},
     number = {5},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a4/}
}
TY  - JOUR
AU  - M. O. Korpusov
AU  - A. A. Panin
TI  - Blow-up of solutions of an abstract Cauchy problem for a~formally hyperbolic equation with double non-linearity
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 937
EP  - 985
VL  - 78
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a4/
LA  - en
ID  - IM2_2014_78_5_a4
ER  - 
%0 Journal Article
%A M. O. Korpusov
%A A. A. Panin
%T Blow-up of solutions of an abstract Cauchy problem for a~formally hyperbolic equation with double non-linearity
%J Izvestiya. Mathematics 
%D 2014
%P 937-985
%V 78
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a4/
%G en
%F IM2_2014_78_5_a4
M. O. Korpusov; A. A. Panin. Blow-up of solutions of an abstract Cauchy problem for a~formally hyperbolic equation with double non-linearity. Izvestiya. Mathematics , Tome 78 (2014) no. 5, pp. 937-985. http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a4/

[1] H. A. Levine, “Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+\mathscr{F}(u)$”, Trans. Amer. Math. Soc., 192 (1974), 1–21 | DOI | MR | Zbl

[2] H. A. Levine, P. Pucci, J. Serrin, “Some remarks on global nonexistence for nonautonomous abstract evolution equations”, Harmonic analysis and nonlinear differential equations (Riverside, CA, 1995), Contemp. Math., 208, Amer. Math. Soc., Providence, RI, 1997, 253–263 | DOI | MR | Zbl

[3] P. Pucci, J. Serrin, “Some new results on global nonexistence for abstract evolution with positive initial energy”, Topol. Methods Nonlinear Anal., 10:2 (1997), 241–247 | MR | Zbl

[4] P. Pucci, J. Serrin, “Global nonexistence for abstract evolution equations with positive initial energy”, J. Differential Equations, 150:1 (1998), 203–214 | DOI | MR | Zbl

[5] B. Straughan, “Further global nonexistence theorems for abstract nonlinear wave equations”, Proc. Amer. Math. Soc., 48:2 (1975), 381–390 | DOI | MR | Zbl

[6] V. K. Kalantarov, O. A. Ladyzhenskaya, “The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types”, J. Soviet Math., 10:1 (1978), 53–70 | DOI | MR | Zbl

[7] H. A. Levine, G. Todorova, “Blow up of solutions of the Cauchy problem for a wave equation with nonlinear damping and source terms and positive initial energy in four space-time dimensions”, Proc. Amer. Math. Soc., 129:3 (2001), 793–805 | DOI | MR | Zbl

[8] A. B. Al'shin, M. O. Korpusov, A. G. Sveshnikov, Blow-up in nonlinear Sobolev type equations, De Gruyter Ser. Nonlinear Anal. Appl., 15, Walter de Gruyter Co., Berlin, 2011, xii+648 pp. | MR | Zbl

[9] È. Mitidieri, S. I. Pokhozhaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234 (2001), 1–362 | MR | Zbl

[10] S. I. Pohozaev, “Critical nonlinearities in partial differential equations”, Milan J. Math., 77:1 (2009), 127–150 | DOI | MR | Zbl

[11] V. A. Galaktionov, S. I. Pohozaev, “On similarity solutions and blow-up spectra for a semilinear wave equation”, Quart. Appl. Math., 61:3 (2003), 583–600 | MR | Zbl

[12] V. A. Galaktionov, S. I. Pohozaev, “Blow-up and critical exponents for nonlinear hyperbolic equations”, Nonlinear Anal., 53:3-4 (2003), 453–466 | DOI | MR | Zbl

[13] V. A. Galaktionov, S. I. Pokhozhaev, “Third-order nonlinear dispersive equations: Shocks, rarefaction, and blowup waves”, Comput. Math. Math. Phys., 48:10 (2008), 1784–1810 | DOI | MR | Zbl

[14] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Blow-up in quasilinear parabolic equations, de Gruyter Exp. Math., 19, Walter de Gruyter Co., Berlin, 1995, xxii+535 pp. | DOI | MR | MR | Zbl | Zbl

[15] H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Math. Lehrbucher und Monogr., 38, Akademie-Verlag, Berlin, 1974, ix+281 pp. | MR | MR | Zbl

[16] Yu. A. Dubinskii, “Slabaya skhodimost v nelineinykh ellipticheskikh i parabolicheskikh uravneniyakh”, Matem. sb., 67(109):4 (1965), 609–642 | MR | Zbl

[17] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer-Verlag, New York, 1985, xxx+322 pp. | MR | MR | Zbl | Zbl

[18] P. G. Ciarlet, The finite element method for elliptic problems, Stud. Math. Appl., 4, North-Holland Publishing Co., Amsterdam–New York–Oxford, 1978, xix+530 pp. | MR | MR | Zbl | Zbl