Modified Bessel ${\mathbf P}$-integrals and $\mathbf P$-derivatives and their properties
Izvestiya. Mathematics , Tome 78 (2014) no. 5, pp. 877-901.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the modified Bessel ${\mathbf P}$-integral, whose properties are similar to those of the Bessel potential, and the modified Bessel ${\mathbf P}$-derivative. These operators are inverse to each other. We prove analogues of the embedding theorems of Hardy, Littlewood, Stein, Zygmund and Lizorkin concerning the images of $L^p(\mathbb R)$ under the action of Bessel potentials. We give applications of the Bessel integral and derivative to the integrability of the ${\mathbf P}$-adic Fourier transform and to approximation theory (an embedding theorem of Ul'yanov type).
Keywords: Bessel potential, modified Bessel $\mathbf P$-derivative, $\mathbf P$-adic Hölder–Besov spaces, $\mathbf P$-adic distributions, $\mathbf P$-adic BMO space, embedding theorem of Ul'yanov type.
@article{IM2_2014_78_5_a1,
     author = {S. S. Volosivets},
     title = {Modified {Bessel} ${\mathbf P}$-integrals and $\mathbf P$-derivatives and their properties},
     journal = {Izvestiya. Mathematics },
     pages = {877--901},
     publisher = {mathdoc},
     volume = {78},
     number = {5},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a1/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - Modified Bessel ${\mathbf P}$-integrals and $\mathbf P$-derivatives and their properties
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 877
EP  - 901
VL  - 78
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a1/
LA  - en
ID  - IM2_2014_78_5_a1
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T Modified Bessel ${\mathbf P}$-integrals and $\mathbf P$-derivatives and their properties
%J Izvestiya. Mathematics 
%D 2014
%P 877-901
%V 78
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a1/
%G en
%F IM2_2014_78_5_a1
S. S. Volosivets. Modified Bessel ${\mathbf P}$-integrals and $\mathbf P$-derivatives and their properties. Izvestiya. Mathematics , Tome 78 (2014) no. 5, pp. 877-901. http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a1/

[1] P. L. Butzer, H. J. Wagner, “Walsh–Fourier series and the concept of a derivative”, Applicable Anal., 3:1 (1973), 29–46 | DOI | MR | Zbl

[2] P. L. Butzer, H. J. Wagner, “A calculus for Walsh functions defined on $\mathbb R_+$”, Proc. Symp. Naval Res. Laboratory (April 18–20, 1973), Washington, DC, 1973, 75–81 | Zbl

[3] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987, 344 pp. ; 2-е изд., испр. и дополн., ЛКИ, М., 2008, 352 с.; B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991, xiv+368 с. | MR | Zbl | DOI | MR | Zbl

[4] H. J. Wagner, “On dyadic analysis for functions defined on $\mathbb R_+$”, Theory and applications of Walsh functions, Proc. Symp. Hatfield Polytechnic, 1975, 101–129

[5] J. Pal, “On a concept of a derivative among functions defined on the dyadic field”, SIAM J. Math. Anal., 8:3 (1977), 375–391 | DOI | MR | Zbl

[6] F. Schipp, W. R. Wade, P. Simon, Walsh series. An introduction to dyadic harmonic analysis, With the collaboration of J. Pál, Adam Hilger, Ltd., Bristol, 1990, x+560 pp. | MR | Zbl

[7] B. I. Golubov, “A modified strong dyadic integral and derivative”, Sb. Math., 193:4 (2002), 507–529 | DOI | DOI | MR | Zbl

[8] B. I. Golubov, “Modified dyadic integral and fractional derivative on $\mathbb R_+$”, Math. Notes, 79:2 (2006), 196–214 | DOI | DOI | MR | Zbl

[9] B. I. Golubov, “On some properties of fractional dyadic derivative and integral”, Anal. Math., 32:3 (2006), 173–205 | DOI | MR | Zbl

[10] S. S. Volosivets, “A modified $\mathbf P$-adic integral and a modified $\mathbf P$-adic derivative for functions defined on a half-axis”, Russian Math. (Iz. VUZ), 49:6 (2005), 25–36 | MR | Zbl

[11] S. S. Volosivets, “The modified multiplicative integral and derivative of arbitrary order on the semiaxis”, Izv. Math., 70:2 (2006), 211–231 | DOI | DOI | MR | Zbl

[12] S. S. Volosivets, “The modified $\mathbf P$-integral and $\mathbf P$-derivative and their applications”, Sb. Math., 203:5 (2012), 613–644 | DOI | DOI | MR | Zbl

[13] C. W. Onneweer, “Fractional differentiation and Lipschitz spaces on local fields”, Trans. Amer. Math. Soc., 258:1 (1980), 155–165 | DOI | MR | Zbl

[14] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-adic analysis and mathematical physics, Ser. Soviet East European Math., 1, World Sci. Publ., River Edge, NJ, 1994, xx+319 pp. | MR | MR | Zbl | Zbl

[15] M. H. Taibleson, Fourier analysis on local fields, Princeton Univ. Press, Princeton, N.J.; Univ. of Tokyo Press, Tokyo, 1975, xii+294 pp. | MR | Zbl

[16] A. Zygmund, Trigonometric series, v. I, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp. | MR | MR | Zbl | Zbl

[17] S. S. Volosivets, “Modified Hardy and Hardy–Littlewood operators and their behaviour in various spaces”, Izv. Math., 75:1 (2011), 29–51 | DOI | DOI | MR | Zbl

[18] S. S. Volosivets, “On ${\mathbf P}$-adic analogs of Hardy and Hardy–Littlewood operators”, East J. Approx., 11:1 (2005), 57–72 | MR | Zbl

[19] B. I. Golubov, S. S. Volosivets, “On the integrability and uniform convergence of multiplicative Fourier transform”, Georgian Math. J., 16:3 (2009), 533–546 | MR | Zbl

[20] C. W. Onneweer, “The Fourier transform of Herz spaces on certain groups”, Monatsh. Math., 97:4 (1984), 297–310 | DOI | MR | Zbl

[21] S. Fridli, “On the rate of convergence of Cesàro means of Walsh–Fourier series”, J. Approx. Theory, 76:1 (1994), 31–53 | DOI | MR | Zbl

[22] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, N.J., 1971, x+297 pp. | MR | Zbl | Zbl

[23] E. M. Stein, “The characterization of functions arising as potentials”, Bull. Amer. Math. Soc., 67:1 (1961), 102–104 | DOI | MR | Zbl

[24] R. E. Edwards, Fourier series. A modern introduction, v. 2, Grad. Texts in Math., 85, 2nd ed., Springer-Verlag, New York–Berlin, 1982, xi+369 pp. | MR | MR | Zbl | Zbl

[25] P. I. Lizorkin, “Obobschennoe liuvillevskoe differentsirovanie i funktsionalnye prostranstva $L^r_p(E_n)$. Teoremy vlozheniya”, Matem. sb., 60(102):3 (1963), 325–353 | MR | Zbl

[26] C. P. Calderon, E. B. Fabes, N. M. Riviere, “Maximal smoothing operators”, Indiana Univ. Math. J., 23:10 (1974), 889–898 | DOI | MR | Zbl

[27] S. M. Nikol'skiĭ, Approximation of functions of several variables and imbedding theorems, Grundlehren Math. Wiss., 205, Springer-Verlag, New York–Heidelberg, 1975, viii+418 pp. | MR | MR | Zbl | Zbl

[28] A. F. Timan, Theory of approximation of functions of a real variable, International Series of Monographs in Pure and Applied Mathematics, 34, A Pergamon Press Book The Macmillan Co., New York, 1963, xii+631 pp. | MR | MR | Zbl

[29] M. H. Taibleson, “On the theory of Lipschitz spaces of distributions on Euclidean $n$-space. I. Principal properties”, J. Math. Mech., 13:3 (1964), 407–480 | MR | Zbl

[30] E. M. Stein, A. Zygmund, “Boundedness of translation invariant operators on Hölder spaces and $L^p$-spaces”, Ann. Math., 85:2 (1967), 337–349 | DOI | MR | Zbl

[31] L. I. Hedberg, “On certain convolution inequalities”, Proc. Amer. Math. Soc., 36:2 (1972), 505–510 | DOI | MR | Zbl

[32] V. I. Burenkov, “On estimates of Fourier transforms and convolutions in Nikol'skii–Besov spaces”, Proc. Steklov Inst. Math., 187 (1990), 35–44 | MR | Zbl

[33] P. L. Ul'yanov, “The imbedding of certain function classes $H_p^\omega$”, Math. USSR-Izv., 2:3 (1968), 601–637 | DOI | MR | Zbl