A geometric description of domains whose Hardy constant is equal to~1/4
Izvestiya. Mathematics , Tome 78 (2014) no. 5, pp. 855-876
Voir la notice de l'article provenant de la source Math-Net.Ru
We give a geometric description of families of non-convex planar and spatial
domains in which the following Hardy inequality holds: the Dirichlet integral
of any smooth compactly supported function $f$ on the domain is greater than
or equal to one quarter of the integral of $f^2(x)/\delta^2(x)$, where
$\delta(x)$ is the distance from $x$ to the boundary of the domain. Our
geometric description is based analytically on new one-dimensional
Hardy-type inequalities with special weights and on new constants
related to these inequalities and hypergeometric functions.
Keywords:
Hardy inequalities, hypergeometric functions, torsional rigidity.
Mots-clés : non-convex domains
Mots-clés : non-convex domains
@article{IM2_2014_78_5_a0,
author = {F. G. Avkhadiev},
title = {A geometric description of domains whose {Hardy} constant is equal to~1/4},
journal = {Izvestiya. Mathematics },
pages = {855--876},
publisher = {mathdoc},
volume = {78},
number = {5},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a0/}
}
F. G. Avkhadiev. A geometric description of domains whose Hardy constant is equal to~1/4. Izvestiya. Mathematics , Tome 78 (2014) no. 5, pp. 855-876. http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a0/