A geometric description of domains whose Hardy constant is equal to~1/4
Izvestiya. Mathematics , Tome 78 (2014) no. 5, pp. 855-876

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a geometric description of families of non-convex planar and spatial domains in which the following Hardy inequality holds: the Dirichlet integral of any smooth compactly supported function $f$ on the domain is greater than or equal to one quarter of the integral of $f^2(x)/\delta^2(x)$, where $\delta(x)$ is the distance from $x$ to the boundary of the domain. Our geometric description is based analytically on new one-dimensional Hardy-type inequalities with special weights and on new constants related to these inequalities and hypergeometric functions.
Keywords: Hardy inequalities, hypergeometric functions, torsional rigidity.
Mots-clés : non-convex domains
@article{IM2_2014_78_5_a0,
     author = {F. G. Avkhadiev},
     title = {A geometric description of domains whose {Hardy} constant is equal to~1/4},
     journal = {Izvestiya. Mathematics },
     pages = {855--876},
     publisher = {mathdoc},
     volume = {78},
     number = {5},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a0/}
}
TY  - JOUR
AU  - F. G. Avkhadiev
TI  - A geometric description of domains whose Hardy constant is equal to~1/4
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 855
EP  - 876
VL  - 78
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a0/
LA  - en
ID  - IM2_2014_78_5_a0
ER  - 
%0 Journal Article
%A F. G. Avkhadiev
%T A geometric description of domains whose Hardy constant is equal to~1/4
%J Izvestiya. Mathematics 
%D 2014
%P 855-876
%V 78
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a0/
%G en
%F IM2_2014_78_5_a0
F. G. Avkhadiev. A geometric description of domains whose Hardy constant is equal to~1/4. Izvestiya. Mathematics , Tome 78 (2014) no. 5, pp. 855-876. http://geodesic.mathdoc.fr/item/IM2_2014_78_5_a0/