Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2014_78_4_a3, author = {V. V. Kozlov}, title = {Liouville's equation as {a~Schr\"odinger} equation}, journal = {Izvestiya. Mathematics }, pages = {744--757}, publisher = {mathdoc}, volume = {78}, number = {4}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a3/} }
V. V. Kozlov. Liouville's equation as a~Schr\"odinger equation. Izvestiya. Mathematics , Tome 78 (2014) no. 4, pp. 744-757. http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a3/
[1] A. A. Kirillov, “Geometricheskoe kvantovanie”, Dinamicheskie sistemy – 4, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 4, VINITI, M., 1985, 141–176 | MR | Zbl
[2] M. A. Naĭmark, Linear differential operators, v. I, II, Frederick Ungar Publishing Co., New York, 1967, 1968, xiii+144 pp., xv+352 pp. | MR | MR | MR | Zbl | Zbl
[3] I. Prigogine, Non-equilibrium statistical mechanics, Monographs in Statistical Physics and Thermodynamics, I, Interscience Publishers John Wiley Sons, Inc., New York–London, 1962, viii+319 pp. | MR | Zbl | Zbl
[4] I. M. Gel'fand, G. E. Shilov, Generalized functions, v. 3, Theory of differential equations, Academic Press, New York–London, 1967, x+222 pp. | MR | MR | Zbl | Zbl
[5] M. V. Berry, J. P. Keating, “$H=xp$ and the Riemann zeros”, Supersymmetry and trace formulae: chaos and disorder, Cambridge, UK, September 8–20, 1997, NATO ASI Series. Series B. Physics, 370, eds. I. V. Lerner et al., Kluwer Academic Press, New York, NY, 1999, 355–367 | Zbl
[6] A. N. Kolmogorov, “O dinamicheskikh sistemakh s integralnym invariantom na tore”, Dokl. AN SSSR, 93:5 (1953), 763–766 | MR | Zbl
[7] V. V. Kozlov, “Dynamical systems with multivalued integrals on a torus”, Proc. Steklov Inst. Math., 256 (2007), 188–205 | DOI | MR | Zbl
[8] J. Moser, “On the volume elements on a manifold”, Trans. Amer. Math. Soc., 120:2 (1965), 286–294 | DOI | MR | Zbl
[9] V. V. Kozlov, “On Bohl's argument theorem”, Math. Notes, 93:1 (2013), 83–89 | DOI | DOI | Zbl
[10] V. V. Kozlov, “Thermal equilibrium in the sense of Gibbs and Poincaré”, Dokl. Math., 65:1 (2002), 125–128 | MR | Zbl
[11] D. V. Treshchev, “An estimate of irremovable nonconstant terms in the reducibility problem”, Dynamical systems in classical mechanics, Amer. Math. Soc. Transl. Ser. 2, 168, ed. V. V. Kozlov, Amer. Math. Soc., Providence, RI, 1995, 91–128 | MR | Zbl