Sumsets of reciprocals in prime fields and multilinear Kloosterman sums
Izvestiya. Mathematics , Tome 78 (2014) no. 4, pp. 656-707.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain new results on the additive properties of the set $I^{-1}=\{x^{-1}\colon x\in I\}$, where $I$ is an arbitrary interval in the field of residue classes modulo a large prime $p$. Combining our results with estimates of multilinear exponential sums, we obtain new results on incomplete multilinear Kloosterman sums.
Keywords: sumsets, multilinear exponential sums, multilinear Kloosterman sums, distribution of primes.
Mots-clés : congruences modulo a prime
@article{IM2_2014_78_4_a1,
     author = {J. Bourgain and M. Z. Garaev},
     title = {Sumsets of reciprocals in prime fields and multilinear {Kloosterman} sums},
     journal = {Izvestiya. Mathematics },
     pages = {656--707},
     publisher = {mathdoc},
     volume = {78},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a1/}
}
TY  - JOUR
AU  - J. Bourgain
AU  - M. Z. Garaev
TI  - Sumsets of reciprocals in prime fields and multilinear Kloosterman sums
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 656
EP  - 707
VL  - 78
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a1/
LA  - en
ID  - IM2_2014_78_4_a1
ER  - 
%0 Journal Article
%A J. Bourgain
%A M. Z. Garaev
%T Sumsets of reciprocals in prime fields and multilinear Kloosterman sums
%J Izvestiya. Mathematics 
%D 2014
%P 656-707
%V 78
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a1/
%G en
%F IM2_2014_78_4_a1
J. Bourgain; M. Z. Garaev. Sumsets of reciprocals in prime fields and multilinear Kloosterman sums. Izvestiya. Mathematics , Tome 78 (2014) no. 4, pp. 656-707. http://geodesic.mathdoc.fr/item/IM2_2014_78_4_a1/

[1] J. Bourgain, “More on the sum-product phenomenon in prime fields and its applications”, Int. J. Number Theory, 1:1 (2005), 1–32 | DOI | MR | Zbl

[2] J. Cilleruelo, M. Z. Garaev, “Concentration of points on two and three dimensional modular hyperbolas and applications”, Geom. Funct. Anal., 21:4 (2011), 892–904 | DOI | MR | Zbl

[3] J. Bourgain, “Multilinear exponential sums in prime fields under optimal entropy condition on the sources”, Geom. Funct. Anal., 18:5 (2009), 1477–1502 | DOI | MR | Zbl

[4] M. A. Korolev, “Incomplete Kloosterman sums and their applications”, Izv. Math., 64:6 (2000), 1129–1152 | DOI | DOI | MR | Zbl

[5] A. A. Karatsuba, “Fractional parts of functions of a special form”, Izv. Math., 59:4 (1995), 721–740 | DOI | MR | Zbl

[6] A. A. Karatsuba, “Analogues of Kloosterman sums”, Izv. Math., 59:5 (1995), 971–981 | DOI | MR | Zbl

[7] R. C. Baker, “Kloosterman sums with prime variable”, Acta Arith., 156:4 (2012), 351–372 | DOI | MR | Zbl

[8] Wenzhi Luo, “Bounds for incomplete hyper-Kloosterman sums”, J. Number Theory, 75:1 (1999), 41–46 | DOI | MR | Zbl

[9] I. E. Shparlinski, “Bounds of incomplete multiple Kloosterman sums”, J. Number Theory, 126:1 (2007), 68–73 | DOI | MR | Zbl

[10] D. A. Burgess, “Partial Gaussian sums”, Bull. London Math. Soc., 20:6 (1988), 589–592 | DOI | MR | Zbl

[11] E. Fouvry, I. E. Shparlinski, “On a ternary quadratic form over primes”, Acta Arith., 150:3 (2011), 285–314 | DOI | MR | Zbl

[12] M. Z. Garaev, “Estimation of Kloosterman sums with primes and its application”, Math. Notes, 88:3 (2010), 330–337 | DOI | DOI | MR | Zbl

[13] J. Bourgain, M. Z. Garaev, S. V. Konyagin, I. E. Shparlinski, “On congruences with products of variables from short intervals and applications”, Ortogonalnye ryady, teoriya priblizhenii i smezhnye voprosy, Sb. statei. K 60-letiyu so dnya rozhdeniya akademika Borisa Sergeevicha Kashina, Tr. MIAN, 280, MAIK, M., 2013, 67–96

[14] J. Friedlander, H. Iwaniec, Opera de cribro, Amer. Math. Soc. Colloq. Publ., 57, Amer. Math. Soc., Providence, RI, 2010, xx+527 pp. | MR | Zbl

[15] M. A. Korolev, “Short Kloosterman sums with weights”, Math. Notes, 88:3 (2010), 374–385 | DOI | DOI | MR | Zbl

[16] A. A. Karatsuba, “New estimates of short Kloosterman sums”, Math. Notes, 88:3 (2010), 347–359 | DOI | DOI | MR | Zbl

[17] M. Z. Garaev, “Sums and products of sets and estimates of rational trigonometric sums in fields of prime order”, Russian Math. Surveys, 65:4 (2010), 599–658 | DOI | DOI | MR | Zbl

[18] J. Friedlander, H. Iwaniec, “The Brun–Titchmarsh theorem”, Analytic number theory (Kyoto, 1996), London Math. Soc. Lecture Note Ser., 247, Cambridge Univ. Press, Cambridge, 1997, 85–93 | DOI | MR | Zbl

[19] J. Maynard, “On the Brun–Titchmarsh theorem”, Acta Arith., 157:3 (2013), 249–296 | DOI | MR | Zbl

[20] Y. Motohashi, “An extension of the Linnik phenomenon”, Matematika i informatika, 1, K 75-letiyu so dnya rozhdeniya Anatoliya Alekseevicha Karatsuby, Sovr. probl. matem., 16, MIAN, M., 2012, 66–75 ; Proc. Steklov Inst. Math., 280, suppl. 2 (2013), S56–S64 | DOI | DOI

[21] U. Betke, M. Henk, J. M. Wills, “Successive-minima-type inequalities”, Discrete Comput. Geom., 9:1 (1993), 165–175 | DOI | MR | Zbl

[22] T. Tao, Van H. Vu, Additive combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2006, xviii+512 pp. | DOI | MR | Zbl

[23] Yu. V. Linnik, “Elementarnoe reshenie problemy Varinga po metodu Shnirelmana”, Matem. sb., 12(54):2 (1943), 225–230 | MR | Zbl

[24] Z. I. Borevich, I. R. Shafarevich, Number theory, Pure and Applied Mathematics, 20, Academic Press, New York–London, 1966, x+435 pp. | MR | MR | Zbl | Zbl

[25] K. Ireland, M. Rosen, A classical introduction to modern number theory, Grad. Texts in Math., 84, 2nd ed., Springer-Verlag, New York, 1990, xiv+389 pp. | MR | Zbl

[26] V. V. Prasolov, Polynomials, Algorithms Comput. Math., 11, Springer-Verlag, Berlin, 2004, xiv+301 pp. | MR | Zbl

[27] D. R. Heath-Brown, “Almost-primes in arithmetic progressions and short intervals”, Math. Proc. Cambridge Philos. Soc., 83:3 (1978), 357–375 | DOI | MR | Zbl

[28] J. Bourgain, M. Z. Garaev, S. V. Konyagin, I. E. Shparlinski, “On the hidden shifted power problem”, SIAM J. Comput., 41:6 (2012), 1524–1557 | DOI | MR | Zbl

[29] A. Ayyad, T. Cochrane, Z. Zheng, “The congruence $x_1x_2\equiv x_3x_4\pmod p$, the equation $x_1x_2=x_3x_4$ and mean value of character sums”, J. Number Theory, 59:2 (1996), 398–413 | DOI | MR | Zbl

[30] J. Friedlander, H. Iwaniec, “Estimates for character sums”, Proc. Amer. Math. Soc., 119:2 (1993), 365–372 | DOI | MR | Zbl

[31] J. Bourgain, “The discretized sum-product and projection theorems”, J. Anal. Math., 112:1 (2010), 193–236 | DOI | MR | Zbl

[32] M. N. Huxley, “On the difference between consecutive primes”, Invent. Math., 15:2 (1972), 164–170 | DOI | MR | Zbl

[33] N. G. de Bruijn, “On the number of positive integers $\le x$ and free of prime factors $>\nobreak y$. II”, Nederl. Akad. Wetensch. Proc. Ser. A 69=Indag. Math., 28 (1966), 239–247 | MR | Zbl

[34] R. C. Vaughan, “Sommes trigonométriques sur les nombres premiers”, C. R. Acad. Sci. Paris Sér. A, 285:16 (1977), 981–983 | MR | Zbl

[35] E. Fouvry, Ph. Michel, “Sur certaines sommes d'exponentielles sur les nombres premiers”, Ann. Sci. École Norm. Sup. (4), 31:1 (1998), 93–130 | DOI | MR | Zbl

[36] H. Davenport, Multiplicative number theory, Grad. Texts in Math., 74, 3rd ed., Springer-Verlag, New York, 2000, xiv+177 pp. | MR | Zbl