Characters and dimensions of highest-weight representations of the intermediate Lie group $D_{n-1/2}$
Izvestiya. Mathematics , Tome 78 (2014) no. 3, pp. 621-639

Voir la notice de l'article provenant de la source Math-Net.Ru

We study highest-weight representations of the non-semisimple complex Lie group $D_{n-1/2}$ used for separating multiple points of the spectrum in the reduction $D_n\downarrow D_{n-1}$. In particular, we find formulae for the characters and dimensions of these representations, which turn out to be similar to the well-known Weyl formulae for classical Lie groups.
Keywords: semiclassical intermediate Lie groups, finite-dimensional highest-weight representations, branching rules, weight basis, character and dimension of a representation of a Lie group.
@article{IM2_2014_78_3_a9,
     author = {V. V. Shtepin and D. L. Konashenkov},
     title = {Characters and dimensions of highest-weight representations of the intermediate {Lie} group $D_{n-1/2}$},
     journal = {Izvestiya. Mathematics },
     pages = {621--639},
     publisher = {mathdoc},
     volume = {78},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a9/}
}
TY  - JOUR
AU  - V. V. Shtepin
AU  - D. L. Konashenkov
TI  - Characters and dimensions of highest-weight representations of the intermediate Lie group $D_{n-1/2}$
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 621
EP  - 639
VL  - 78
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a9/
LA  - en
ID  - IM2_2014_78_3_a9
ER  - 
%0 Journal Article
%A V. V. Shtepin
%A D. L. Konashenkov
%T Characters and dimensions of highest-weight representations of the intermediate Lie group $D_{n-1/2}$
%J Izvestiya. Mathematics 
%D 2014
%P 621-639
%V 78
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a9/
%G en
%F IM2_2014_78_3_a9
V. V. Shtepin; D. L. Konashenkov. Characters and dimensions of highest-weight representations of the intermediate Lie group $D_{n-1/2}$. Izvestiya. Mathematics , Tome 78 (2014) no. 3, pp. 621-639. http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a9/