Characters and dimensions of highest-weight representations of the intermediate Lie group $D_{n-1/2}$
Izvestiya. Mathematics , Tome 78 (2014) no. 3, pp. 621-639.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study highest-weight representations of the non-semisimple complex Lie group $D_{n-1/2}$ used for separating multiple points of the spectrum in the reduction $D_n\downarrow D_{n-1}$. In particular, we find formulae for the characters and dimensions of these representations, which turn out to be similar to the well-known Weyl formulae for classical Lie groups.
Keywords: semiclassical intermediate Lie groups, finite-dimensional highest-weight representations, branching rules, weight basis, character and dimension of a representation of a Lie group.
@article{IM2_2014_78_3_a9,
     author = {V. V. Shtepin and D. L. Konashenkov},
     title = {Characters and dimensions of highest-weight representations of the intermediate {Lie} group $D_{n-1/2}$},
     journal = {Izvestiya. Mathematics },
     pages = {621--639},
     publisher = {mathdoc},
     volume = {78},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a9/}
}
TY  - JOUR
AU  - V. V. Shtepin
AU  - D. L. Konashenkov
TI  - Characters and dimensions of highest-weight representations of the intermediate Lie group $D_{n-1/2}$
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 621
EP  - 639
VL  - 78
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a9/
LA  - en
ID  - IM2_2014_78_3_a9
ER  - 
%0 Journal Article
%A V. V. Shtepin
%A D. L. Konashenkov
%T Characters and dimensions of highest-weight representations of the intermediate Lie group $D_{n-1/2}$
%J Izvestiya. Mathematics 
%D 2014
%P 621-639
%V 78
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a9/
%G en
%F IM2_2014_78_3_a9
V. V. Shtepin; D. L. Konashenkov. Characters and dimensions of highest-weight representations of the intermediate Lie group $D_{n-1/2}$. Izvestiya. Mathematics , Tome 78 (2014) no. 3, pp. 621-639. http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a9/

[1] V. V. Shtepin, “Promezhutochnye algebry Li i ikh konechnomernye predstavleniya”, Izv. RAN. Ser. matem., 57:6 (1993), 176–198 ; V. V. Shtepin, “Intermediate Lie algebras and their finite-dimensional representations”, Russian Acad. Sci. Izv. Math., 43:3 (1994), 559–579 | MR | Zbl | DOI

[2] V. V. Shtepin, “Promezhutochnaya ortogonalnaya algebra Li $\mathfrak b_{n-1/2}$ i ee konechnomernye predstavleniya”, Izv. RAN. Ser. matem., 62:3 (1998), 201–223 | DOI | MR | Zbl

[3] V. V. Shtepin, “Promezhutochnaya algebra Li $\mathfrak d_{n-1/2}$, vesovaya skhema i konechnomernye predstavleniya so starshim vesom”, Izv. RAN. Ser. matem., 68:2 (2004), 159–190 | DOI | MR | Zbl

[4] G. Veil, Teoriya grupp i kvantovaya mekhanika, Nauka, M., 1986 ; H. Weyl, Gruppentheorie und Quantenmechanik, S. Hirzel, Leipzig, 1931 | MR | Zbl | MR | Zbl

[5] I. M. Gelfand, M. L. Tsetlin, “Konechnomernye predstavleniya gruppy ortogonalnykh matrits”, Dokl. AN SSSR, 71:6 (1950), 1017–1020 | MR | Zbl

[6] D. P. Zhelobenko, “Klassicheskie gruppy. Spektralnyi analiz konechnomernykh predstavlenii”, UMN, 17:1 (1962), 27–120 | MR | Zbl

[7] A. Barut, R. Ronchka, Teoriya predstavlenii grupp i ee prilozheniya, v. 1, Mir, M., 1980 ; A. O. Barut, R. Raczka, Theory of group representations and applications, Polish Scientific Publ., Warsaw, 1977 | MR | Zbl | MR | Zbl

[8] A. M. Bincer, “Bases in $\mathrm{Sp}(2n)$ representation space”, Group theoretical methods in physics (Cocoyoc, 1980), Lecture Notes in Phys., 135, Springer-Verlag, Berlin–New York, 1980, 459–463 | DOI | MR

[9] V. V. Shtepin, “Razdelenie kratnykh tochek spektra v reduktsii $\mathrm{sp}(2n)\downarrow\mathrm{sp}(2n-2)$”, Funkts. analiz i ego pril., 20:4 (1986), 93–95 | MR | Zbl

[10] G. Veil, “Teoriya predstavlenii nepreryvnykh poluprostykh grupp pri pomoschi lineinykh preobrazovanii”, Izbrannye trudy: Matematika. Teoreticheskaya fizika, Nauka, M., 1984, 100–197 | MR | Zbl

[11] I. M. Gelfand, A. V. Zelevinskii, “Modeli predstavlenii klassicheskikh grupp i ikh skrytye simmetrii”, Funkts. analiz i ego pril., 18:3 (1984), 14–31 | MR | Zbl

[12] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, 3-e izd., Nauka, M., 1985 ; A. I. Borevich, I. R. Shafarevich, Number theory, Academic Press, New York–London, 1966 | MR | Zbl | MR | Zbl