Geometric properties of the set of Banach limits
Izvestiya. Mathematics , Tome 78 (2014) no. 3, pp. 596-620

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the geometry and extreme points of the set $\mathfrak B\subset l_\infty^*$ of all positive normalized shift-invariant functionals on the space $l_\infty$ of all bounded sequences with the uniform norm. In particular, we calculate the radius of $\mathfrak B$ and, for a large class of sequences $x$, describe the orbit of $x$ under the extreme points of $\mathfrak B$.
Keywords: Banach limit, extreme point, almost convergent sequence.
@article{IM2_2014_78_3_a8,
     author = {E. M. Semenov and F. A. Sukochev and A. S. Usachev},
     title = {Geometric properties of the set of {Banach} limits},
     journal = {Izvestiya. Mathematics },
     pages = {596--620},
     publisher = {mathdoc},
     volume = {78},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a8/}
}
TY  - JOUR
AU  - E. M. Semenov
AU  - F. A. Sukochev
AU  - A. S. Usachev
TI  - Geometric properties of the set of Banach limits
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 596
EP  - 620
VL  - 78
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a8/
LA  - en
ID  - IM2_2014_78_3_a8
ER  - 
%0 Journal Article
%A E. M. Semenov
%A F. A. Sukochev
%A A. S. Usachev
%T Geometric properties of the set of Banach limits
%J Izvestiya. Mathematics 
%D 2014
%P 596-620
%V 78
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a8/
%G en
%F IM2_2014_78_3_a8
E. M. Semenov; F. A. Sukochev; A. S. Usachev. Geometric properties of the set of Banach limits. Izvestiya. Mathematics , Tome 78 (2014) no. 3, pp. 596-620. http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a8/