Geometric properties of the set of Banach limits
Izvestiya. Mathematics , Tome 78 (2014) no. 3, pp. 596-620.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the geometry and extreme points of the set $\mathfrak B\subset l_\infty^*$ of all positive normalized shift-invariant functionals on the space $l_\infty$ of all bounded sequences with the uniform norm. In particular, we calculate the radius of $\mathfrak B$ and, for a large class of sequences $x$, describe the orbit of $x$ under the extreme points of $\mathfrak B$.
Keywords: Banach limit, extreme point, almost convergent sequence.
@article{IM2_2014_78_3_a8,
     author = {E. M. Semenov and F. A. Sukochev and A. S. Usachev},
     title = {Geometric properties of the set of {Banach} limits},
     journal = {Izvestiya. Mathematics },
     pages = {596--620},
     publisher = {mathdoc},
     volume = {78},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a8/}
}
TY  - JOUR
AU  - E. M. Semenov
AU  - F. A. Sukochev
AU  - A. S. Usachev
TI  - Geometric properties of the set of Banach limits
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 596
EP  - 620
VL  - 78
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a8/
LA  - en
ID  - IM2_2014_78_3_a8
ER  - 
%0 Journal Article
%A E. M. Semenov
%A F. A. Sukochev
%A A. S. Usachev
%T Geometric properties of the set of Banach limits
%J Izvestiya. Mathematics 
%D 2014
%P 596-620
%V 78
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a8/
%G en
%F IM2_2014_78_3_a8
E. M. Semenov; F. A. Sukochev; A. S. Usachev. Geometric properties of the set of Banach limits. Izvestiya. Mathematics , Tome 78 (2014) no. 3, pp. 596-620. http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a8/

[1] S. Banach, Théorie des opérations linéaires, Jacques Gabay, Sceaux, 1993 | MR | Zbl

[2] P. G. Dodds, B. de Pagter, A. A. Sedaev, E. M. Semënov, F. A. Sukochev, “Singulyarnye simmetrichnye funktsionaly i banakhovy predely s dopolnitelnymi svoistvami invariantnosti”, Izv. RAN. Ser. matem., 67:6 (2003), 111–136 | DOI | MR | Zbl

[3] E. M. Semenov, F. A. Sukochev, “Invariant Banach limits and applications”, J. Funct. Anal., 259:6 (2010), 1517–1541 | DOI | MR | Zbl

[4] Y. Peres, “Application of Banach limits to the study of sets of integers”, Israel J. Math., 62:1 (1988), 17–31 | DOI | MR | Zbl

[5] A. Keri, F. Sukochev, “Sledy Diksme i nekotorye prilozheniya v nekommutativnoi geometrii”, UMN, 61:6 (2006), 45–110 | DOI | MR | Zbl

[6] E. M. Semenov, F. A. Sukochev, “Kharakteristicheskie funktsii banakhovykh predelov”, Sib. matem. zhurn., 51:4 (2010), 904–910 | MR | Zbl

[7] D. H. Fremlin, M. Talagrand, “A decomposition theorem for additive set-functions, with applications to Pettis integrals and ergodic means”, Math. Z., 168:2 (1979), 117–142 | DOI | MR | Zbl

[8] G. Keller, L. C. Moore, Jr., “Invariant means on the group of integers”, Analysis and geometry, Bibliographisches Inst., Mannheim, 1992, 1–18 | MR | Zbl

[9] W. A. J. Luxemburg, “Nonstandard hulls, generalized limits and almost convergence”, Analysis and geometry, Bibliographisches Inst., Mannheim, 1992, 19–45 | MR | Zbl

[10] R. Nillsen, “Nets of extreme Banach limits”, Proc. Amer. Math. Soc., 55:2 (1976), 347–352 | DOI | MR | Zbl

[11] E. Semenov, F. Sukochev, “Extreme points of the set of Banach limits”, Positivity, 17:1 (2013), 163–170 | DOI | MR | Zbl

[12] M. Talagrand, “Géométrie des simplexes de moyennes invariantes”, J. Funct. Anal., 34:2 (1979), 304–337 | DOI | MR | Zbl

[13] C. Chou, “Minimal sets and ergodic measures for $\beta\mathbb N\setminus\mathbb N$”, Illinois J. Math., 13:4 (1969), 777–788 | MR | Zbl

[14] E. M. Semenov, F. A. Sukochev, A. S. Usachev, “Strukturnye svoistva mnozhestva banakhovykh predelov”, Dokl. RAN, 84:3 (2011), 802–803 | MR | Zbl

[15] G. G. Lorentz, “A contribution to the theory of divergent sequences”, Acta Math., 80 (1948), 167–190 | DOI | MR | Zbl

[16] L. Sucheston, “Banach limits”, Amer. Math. Monthly, 74 (1967), 308–311 | DOI | MR | Zbl

[17] E. M. Semenov, A. S. Usachev, “Koeffitsienty Fure–Khaara i banakhovy predely”, Dokl. RAN, 425:2 (2009), 172–173 | MR | Zbl

[18] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 ; W. Rudin, Functional analysis, McGraw-Hill, New York–Düsseldorf–Johannesburg, 1973 | MR | MR | Zbl

[19] N. Kalton, F. Sukochev, “Rearrangement-invariant functionals with applications to traces on symmetrically normed ideals”, Canad. Math. Bull., 51:1 (2008), 67–80 | DOI | MR | Zbl

[20] E. M. Semenov, A. S. Usachev, O. O. Khorpyakov, “Prostranstvo pochti skhodyaschikhsya posledovatelnostei”, Dokl. RAN, 409:6 (2006), 754–755 | MR | Zbl

[21] F. Grinlif, Invariantnye srednie na topologicheskikh gruppakh i ikh prilozheniya, Mir, M., 1973 ; F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand, London, 1969 | Zbl | MR | Zbl

[22] E. Alekhno, “Superposition operator on the space of sequences almost converging to zero”, Cent. Eur. J. Math., 10:2 (2012), 619–645 | DOI | MR | Zbl

[23] J. Appell, E. De Pascale, P. P. Zabrejko, “Some remarks on Banach limits”, Atti Sem. Mat. Fis. Univ. Modena, 42:1 (1994), 273–278 | MR | Zbl

[24] F. Balibrea, G. Vera, “On the sublinear functional associated to a family of invariant means”, Manuscripta Math., 55:1 (1986), 101–109 | DOI | MR | Zbl