Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2014_78_3_a8, author = {E. M. Semenov and F. A. Sukochev and A. S. Usachev}, title = {Geometric properties of the set of {Banach} limits}, journal = {Izvestiya. Mathematics }, pages = {596--620}, publisher = {mathdoc}, volume = {78}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a8/} }
E. M. Semenov; F. A. Sukochev; A. S. Usachev. Geometric properties of the set of Banach limits. Izvestiya. Mathematics , Tome 78 (2014) no. 3, pp. 596-620. http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a8/
[1] S. Banach, Théorie des opérations linéaires, Jacques Gabay, Sceaux, 1993 | MR | Zbl
[2] P. G. Dodds, B. de Pagter, A. A. Sedaev, E. M. Semënov, F. A. Sukochev, “Singulyarnye simmetrichnye funktsionaly i banakhovy predely s dopolnitelnymi svoistvami invariantnosti”, Izv. RAN. Ser. matem., 67:6 (2003), 111–136 | DOI | MR | Zbl
[3] E. M. Semenov, F. A. Sukochev, “Invariant Banach limits and applications”, J. Funct. Anal., 259:6 (2010), 1517–1541 | DOI | MR | Zbl
[4] Y. Peres, “Application of Banach limits to the study of sets of integers”, Israel J. Math., 62:1 (1988), 17–31 | DOI | MR | Zbl
[5] A. Keri, F. Sukochev, “Sledy Diksme i nekotorye prilozheniya v nekommutativnoi geometrii”, UMN, 61:6 (2006), 45–110 | DOI | MR | Zbl
[6] E. M. Semenov, F. A. Sukochev, “Kharakteristicheskie funktsii banakhovykh predelov”, Sib. matem. zhurn., 51:4 (2010), 904–910 | MR | Zbl
[7] D. H. Fremlin, M. Talagrand, “A decomposition theorem for additive set-functions, with applications to Pettis integrals and ergodic means”, Math. Z., 168:2 (1979), 117–142 | DOI | MR | Zbl
[8] G. Keller, L. C. Moore, Jr., “Invariant means on the group of integers”, Analysis and geometry, Bibliographisches Inst., Mannheim, 1992, 1–18 | MR | Zbl
[9] W. A. J. Luxemburg, “Nonstandard hulls, generalized limits and almost convergence”, Analysis and geometry, Bibliographisches Inst., Mannheim, 1992, 19–45 | MR | Zbl
[10] R. Nillsen, “Nets of extreme Banach limits”, Proc. Amer. Math. Soc., 55:2 (1976), 347–352 | DOI | MR | Zbl
[11] E. Semenov, F. Sukochev, “Extreme points of the set of Banach limits”, Positivity, 17:1 (2013), 163–170 | DOI | MR | Zbl
[12] M. Talagrand, “Géométrie des simplexes de moyennes invariantes”, J. Funct. Anal., 34:2 (1979), 304–337 | DOI | MR | Zbl
[13] C. Chou, “Minimal sets and ergodic measures for $\beta\mathbb N\setminus\mathbb N$”, Illinois J. Math., 13:4 (1969), 777–788 | MR | Zbl
[14] E. M. Semenov, F. A. Sukochev, A. S. Usachev, “Strukturnye svoistva mnozhestva banakhovykh predelov”, Dokl. RAN, 84:3 (2011), 802–803 | MR | Zbl
[15] G. G. Lorentz, “A contribution to the theory of divergent sequences”, Acta Math., 80 (1948), 167–190 | DOI | MR | Zbl
[16] L. Sucheston, “Banach limits”, Amer. Math. Monthly, 74 (1967), 308–311 | DOI | MR | Zbl
[17] E. M. Semenov, A. S. Usachev, “Koeffitsienty Fure–Khaara i banakhovy predely”, Dokl. RAN, 425:2 (2009), 172–173 | MR | Zbl
[18] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 ; W. Rudin, Functional analysis, McGraw-Hill, New York–Düsseldorf–Johannesburg, 1973 | MR | MR | Zbl
[19] N. Kalton, F. Sukochev, “Rearrangement-invariant functionals with applications to traces on symmetrically normed ideals”, Canad. Math. Bull., 51:1 (2008), 67–80 | DOI | MR | Zbl
[20] E. M. Semenov, A. S. Usachev, O. O. Khorpyakov, “Prostranstvo pochti skhodyaschikhsya posledovatelnostei”, Dokl. RAN, 409:6 (2006), 754–755 | MR | Zbl
[21] F. Grinlif, Invariantnye srednie na topologicheskikh gruppakh i ikh prilozheniya, Mir, M., 1973 ; F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand, London, 1969 | Zbl | MR | Zbl
[22] E. Alekhno, “Superposition operator on the space of sequences almost converging to zero”, Cent. Eur. J. Math., 10:2 (2012), 619–645 | DOI | MR | Zbl
[23] J. Appell, E. De Pascale, P. P. Zabrejko, “Some remarks on Banach limits”, Atti Sem. Mat. Fis. Univ. Modena, 42:1 (1994), 273–278 | MR | Zbl
[24] F. Balibrea, G. Vera, “On the sublinear functional associated to a family of invariant means”, Manuscripta Math., 55:1 (1986), 101–109 | DOI | MR | Zbl