Radial majorants of functions with zero integrals over balls of a~fixed radius
Izvestiya. Mathematics , Tome 78 (2014) no. 3, pp. 580-595.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of the existence of a non-zero function with a given radial majorant and zero integrals over all balls of a fixed radius. We consider the case when the function is defined in a domain containing a half-space.
Keywords: spherical means, mean periodicity.
@article{IM2_2014_78_3_a7,
     author = {O. A. Ochakovskaya},
     title = {Radial majorants of functions with zero integrals over balls of a~fixed radius},
     journal = {Izvestiya. Mathematics },
     pages = {580--595},
     publisher = {mathdoc},
     volume = {78},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a7/}
}
TY  - JOUR
AU  - O. A. Ochakovskaya
TI  - Radial majorants of functions with zero integrals over balls of a~fixed radius
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 580
EP  - 595
VL  - 78
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a7/
LA  - en
ID  - IM2_2014_78_3_a7
ER  - 
%0 Journal Article
%A O. A. Ochakovskaya
%T Radial majorants of functions with zero integrals over balls of a~fixed radius
%J Izvestiya. Mathematics 
%D 2014
%P 580-595
%V 78
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a7/
%G en
%F IM2_2014_78_3_a7
O. A. Ochakovskaya. Radial majorants of functions with zero integrals over balls of a~fixed radius. Izvestiya. Mathematics , Tome 78 (2014) no. 3, pp. 580-595. http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a7/

[1] V. V. Volchkov, Integral geometry and convolution equations, Kluwer Acad. Publ., Dordrecht, 2003 | MR | Zbl

[2] V. V. Volchkov, Vit. V. Volchkov, Harmonic analysis of mean periodic functions on symmetric spaces and the Heisenberg group, Springer Monogr. Math., Springer-Verlag, London, 2009 | MR | Zbl

[3] V. V. Volchkov, “Solution of the support problem for several function classes”, Sb. Math., 188:9 (1997), 1279–1294 | DOI | DOI | MR | Zbl

[4] L. Hörmander, The analysis of linear partial differential operators, vols. 1, 2, Grundlehren Math. Wiss., 256–257, Springer-Verlag, Berlin, 1983 | MR | MR | MR | MR | Zbl | Zbl

[5] J. D. Smith, “Harmonic analysis of scalar and vector fields in $\mathbb{R}^n$”, Proc. Cambridge Philos. Soc., 72:3 (1972), 403–416 | DOI | MR | Zbl

[6] S. Thangavelu, “Spherical means and CR functions on the Heisenberg group”, J. Anal. Math., 63 (1994), 255–286 | DOI | MR | Zbl

[7] V. V. Volchkov, “Uniqueness theorems for some classes of functions with zero spherical means”, Math. Notes, 62:1 (1997), 50–55 | DOI | DOI | MR | Zbl

[8] O. A. Ochakovskaya, “Precise characterizations of admissible rate of decrease of a non-trivial function with zero ball means”, Sb. Math., 199:1 (2008), 45–65 | DOI | DOI | MR | Zbl

[9] A. Sitaram, “Fourier analysis and determining sets for Radon measures on $\mathbb{R}^n$”, Illinois J. Math., 28:2 (1984), 339–347 | MR | Zbl

[10] M. Shahshahani, A. Sitaram, “The Pompeiu problem in exterior domains in symmetric spaces”, Integral geometry (Brunswick, Maine, 1984), Contemp. Math., 63, Amer. Math. Soc., Providence, RI, 1987, 267–277 | DOI | MR | Zbl

[11] M. A. Evgrafov, Asymptotic estimates and entire functions, Gordon and Breach, New York, 1961 | MR | MR | Zbl | Zbl

[12] B. G. Korenev, Vvedenie v teoriyu besselevykh funktsii, Nauka, M., 1971 | MR | Zbl

[13] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl | Zbl

[14] Eu. Seneta, Regularly varying functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | DOI | MR | MR | Zbl | Zbl

[15] N. Ya. Vilenkin, Special functions and the theory of group representations, Amer. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl | Zbl

[16] V. V. Volchkov, Vit. V. Volchkov, “Convolution equations and the local Pompeiu property on symmetric spaces and on phase space associated to the Heisenberg group”, J. Anal. Math., 105 (2008), 43–123 | DOI | MR | Zbl