Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2014_78_3_a7, author = {O. A. Ochakovskaya}, title = {Radial majorants of functions with zero integrals over balls of a~fixed radius}, journal = {Izvestiya. Mathematics }, pages = {580--595}, publisher = {mathdoc}, volume = {78}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a7/} }
O. A. Ochakovskaya. Radial majorants of functions with zero integrals over balls of a~fixed radius. Izvestiya. Mathematics , Tome 78 (2014) no. 3, pp. 580-595. http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a7/
[1] V. V. Volchkov, Integral geometry and convolution equations, Kluwer Acad. Publ., Dordrecht, 2003 | MR | Zbl
[2] V. V. Volchkov, Vit. V. Volchkov, Harmonic analysis of mean periodic functions on symmetric spaces and the Heisenberg group, Springer Monogr. Math., Springer-Verlag, London, 2009 | MR | Zbl
[3] V. V. Volchkov, “Solution of the support problem for several function classes”, Sb. Math., 188:9 (1997), 1279–1294 | DOI | DOI | MR | Zbl
[4] L. Hörmander, The analysis of linear partial differential operators, vols. 1, 2, Grundlehren Math. Wiss., 256–257, Springer-Verlag, Berlin, 1983 | MR | MR | MR | MR | Zbl | Zbl
[5] J. D. Smith, “Harmonic analysis of scalar and vector fields in $\mathbb{R}^n$”, Proc. Cambridge Philos. Soc., 72:3 (1972), 403–416 | DOI | MR | Zbl
[6] S. Thangavelu, “Spherical means and CR functions on the Heisenberg group”, J. Anal. Math., 63 (1994), 255–286 | DOI | MR | Zbl
[7] V. V. Volchkov, “Uniqueness theorems for some classes of functions with zero spherical means”, Math. Notes, 62:1 (1997), 50–55 | DOI | DOI | MR | Zbl
[8] O. A. Ochakovskaya, “Precise characterizations of admissible rate of decrease of a non-trivial function with zero ball means”, Sb. Math., 199:1 (2008), 45–65 | DOI | DOI | MR | Zbl
[9] A. Sitaram, “Fourier analysis and determining sets for Radon measures on $\mathbb{R}^n$”, Illinois J. Math., 28:2 (1984), 339–347 | MR | Zbl
[10] M. Shahshahani, A. Sitaram, “The Pompeiu problem in exterior domains in symmetric spaces”, Integral geometry (Brunswick, Maine, 1984), Contemp. Math., 63, Amer. Math. Soc., Providence, RI, 1987, 267–277 | DOI | MR | Zbl
[11] M. A. Evgrafov, Asymptotic estimates and entire functions, Gordon and Breach, New York, 1961 | MR | MR | Zbl | Zbl
[12] B. G. Korenev, Vvedenie v teoriyu besselevykh funktsii, Nauka, M., 1971 | MR | Zbl
[13] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl | Zbl
[14] Eu. Seneta, Regularly varying functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | DOI | MR | MR | Zbl | Zbl
[15] N. Ya. Vilenkin, Special functions and the theory of group representations, Amer. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl | Zbl
[16] V. V. Volchkov, Vit. V. Volchkov, “Convolution equations and the local Pompeiu property on symmetric spaces and on phase space associated to the Heisenberg group”, J. Anal. Math., 105 (2008), 43–123 | DOI | MR | Zbl