Blow-up of solutions of non-linear equations of Kadomtsev--Petviashvili and Zakharov--Kuznetsov types
Izvestiya. Mathematics , Tome 78 (2014) no. 3, pp. 500-530.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Kadomtsev–Petviashvili equation and Zakharov–Kuznetsov equation are important in physical applications. We obtain sufficient conditions for finite-time blow-up of solutions of these equations in bounded and unbounded domains. We describe how the initial data influence the blow-up time. To do this, we use the non-linear capacity method suggested by Pokhozhaev and Mitidieri and combine it with the method of test functions, which was developed in joint papers with Galaktionov. Note that our results are the first blow-up results for many equations in this class.
Keywords: Kadomtsev–Petviashvili equation, Zakharov–Kuznetsov equation, blow-up of solutions, non-linear capacity method.
@article{IM2_2014_78_3_a4,
     author = {M. O. Korpusov and A. G. Sveshnikov and E. V. Yushkov},
     title = {Blow-up of solutions of non-linear equations of {Kadomtsev--Petviashvili} and {Zakharov--Kuznetsov} types},
     journal = {Izvestiya. Mathematics },
     pages = {500--530},
     publisher = {mathdoc},
     volume = {78},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a4/}
}
TY  - JOUR
AU  - M. O. Korpusov
AU  - A. G. Sveshnikov
AU  - E. V. Yushkov
TI  - Blow-up of solutions of non-linear equations of Kadomtsev--Petviashvili and Zakharov--Kuznetsov types
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 500
EP  - 530
VL  - 78
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a4/
LA  - en
ID  - IM2_2014_78_3_a4
ER  - 
%0 Journal Article
%A M. O. Korpusov
%A A. G. Sveshnikov
%A E. V. Yushkov
%T Blow-up of solutions of non-linear equations of Kadomtsev--Petviashvili and Zakharov--Kuznetsov types
%J Izvestiya. Mathematics 
%D 2014
%P 500-530
%V 78
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a4/
%G en
%F IM2_2014_78_3_a4
M. O. Korpusov; A. G. Sveshnikov; E. V. Yushkov. Blow-up of solutions of non-linear equations of Kadomtsev--Petviashvili and Zakharov--Kuznetsov types. Izvestiya. Mathematics , Tome 78 (2014) no. 3, pp. 500-530. http://geodesic.mathdoc.fr/item/IM2_2014_78_3_a4/

[1] S. I. Pokhozhaev, “On the nonexistence of global solutions of some initial-boundary value problems for the Korteweg–de Vries equation”, Differ. Equ., 47:4 (2011), 488–493 | DOI | MR | Zbl

[2] S. I. Pokhozhaev, “On the absence of global solutions of the Korteweg-de Vries equation”, J. Math. Sci. (N. Y.), 190:1 (2013), 147–156 | DOI | MR

[3] E. Mitidieri, S. I. Pokhozhaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234 (2001), 1–362 | MR | MR | Zbl

[4] B. B. Kadomtsev, V. I. Petviashvili, “On the stability of solitary waves in weakly dispersing media”, Soviet Phys. Dokl., 15 (1970), 539–541 | Zbl

[5] Y. Liu, “Blow up and instability of solitary-wave solutions to a generalized Kadomtsev–Petviashvili equation”, Trans. Amer. Math. Soc., 353:1 (2001), 191–208 | DOI | MR | Zbl

[6] Y. Liu, X.-P. Wang, “Nonlinear stability of solitary waves of a generalized Kadomtsev–Petviashvili equation”, Comm. Math. Phys., 183:2 (1997), 253–266 | DOI | MR | Zbl

[7] J.-C. Saut, “Remarks on the generalized Kadomtsev–Petviashvili equations”, Indiana Univ. Math. J., 42:3 (1993), 1011–1026 | DOI | MR | Zbl

[8] J.-C. Saut, “Recent results on the generalized Kadomtsev–Petviashvili equations”, Acta Appl. Math., 39:1–3 (1995), 477–487 | DOI | MR | Zbl

[9] C. Klein, J.-C. Saut, Numerical study of blow up and stability of solutions of generalized Kadomtsev–Petviashvili equations, arXiv: abs/1010.5510

[10] M. Hadac, Well-posedness for the Kadomtsev–Petviashvili. II. Equation and generalisations, arXiv: abs/math/0611197

[11] V. E. Zakharov, E. A. Kuznetsov, “On three-dimensional solitons”, Sov. Phys. JETP, 39 (1974), 285–286

[12] A. V. Faminskij, “The Cauchy problem for the Zakharov–Kuznetsov equation”, Differ. Equ., 31:6 (1995), 1002–1012 | MR | Zbl

[13] A. V. Faminskii, “O nelokalnoi korrektnosti smeshannoi zadachi dlya uravneniya Zakharova–Kuznetsova”, Sovr. matem. i ee pril., 38 (2006), 135–148

[14] R. Kh. Zeytounian, “Nonlinear long waves on water and solitons”, Physics–Uspekhi, 38:12 (1995), 1333–1381 | DOI | DOI

[15] M. B. Vinogradova, O. V. Rudenko, A. P. Sukhorukov, Teoriya voln, Nauka, M., 1990 | MR | Zbl

[16] C. C. Lin, E. Reissner, H. S. Tsien, “On two-dimensional non-steady motion of a slender body in a compressible fluid”, J. Math. Phys., 27:3 (1948), 220–231 | MR | Zbl

[17] L. A. Ostrovsky, “Nonlinear internal waves in a rotating ocean”, Okeanologia, 18 (1978), 181–191

[18] M. Chen, “From Boussinesq systems to KP-type equations”, Can. Appl. Math., 15:4 (2007), 367–373 | MR | Zbl

[19] Y. Mammeri, “Unique continuation property for the KP-BBM-II equation”, Differential Integral Equations, 22:3–4 (2009), 393–399 | MR | Zbl

[20] H. A. Levine, “Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+\mathscr{F}(u)$”, Trans. Amer. Math. Soc., 192 (1974), 1–21 | DOI | MR | Zbl

[21] B. Straughan, “Further global nonexistence theorems for abstract nonlinear wave equations”, Proc. Amer. Math. Soc., 48 (1975), 381–390 | DOI | MR | Zbl

[22] H. A. Levine, G. Todorova, “Blow up of solutions of the Cauchy problem for a wave equation with nonlinear damping and source terms and positive initial energy”, Proc. Amer. Math. Soc., 129:3 (2003), 793–805 | DOI | MR | Zbl

[23] P. Pucci, J. Serrin, “Some new results on global nonexistence for abstract evolution with positive initial energy”, Topol. Methods Nonlinear Anal., 10:2 (1997), 241–247 | Zbl

[24] P. Pucci, J. Serrin, “Global nonexistence for abstract evolution equations with positive initial energy”, J. Diff. Equations, 150:1 (1998), 203–214 | DOI | MR | Zbl

[25] V. K. Kalantarov, O. A. Ladyzhenskaya, “The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types”, J. Soviet Math., 10:1 (1978), 53–70 | DOI | MR | Zbl | Zbl

[26] A. B. Al'shin, M. O. Korpusov, A. G. Sveshnikov, Blow-up in nonlinear Sobolev type equations, De Gruyter Ser. Nonlinear Anal. Appl., 15, de Gruyter, Berlin, 2011 | MR | Zbl

[27] V. A. Galaktionov, S. I. Pohozaev, “Third-order nonlinear dispersive equations: Shocks, rarefaction, and blowup waves”, Comput. Math. Math. Phys., 48:10 (2008), 1784–1810 | DOI | MR | Zbl

[28] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Blow-up in quasilinear parabolic equations, de Gruyter Exp. Math., 19, de Gruyter, Berlin, 1995 | MR | MR | Zbl | Zbl

[29] E. Mitidieri, V. A. Galaktionov, S. I. Pohozaev, “On global solutions and blow-up for Kuramoto–Sivashinsky-type models, and well-posed Burnett equations”, Nonlinear Anal., 70:8 (2009), 2930–2952 | DOI | MR | Zbl

[30] S. I. Pohozaev, “Critical nonlinearities in partial differential equations”, Milan J. Math., 77:1 (2009), 127–150 | DOI | MR | Zbl

[31] L. S. Evans, Partial differential equations, Grad. Stud. Math., 19, Amer. Math. Soc., Providence, RI, 2010 | MR | Zbl

[32] S. N. Glazatov, “On solvability of a spatial periodic problem for the Lin–Reissner–Tsien equation of transonic gas dynamics”, Math. Notes, 87:1 (2010), 130–134 | DOI | DOI | MR | Zbl