Multiplicative sufficient conditions for Fourier multipliers
Izvestiya. Mathematics , Tome 78 (2014) no. 2, pp. 354-374.

Voir la notice de l'article provenant de la source Math-Net.Ru

We get new sufficient conditions for Fourier multipliers in Hardy spaces $H_p(\mathbb R^n)$, $0$, and $L_p(\mathbb R^n)$, $1\le p\le\infty$. Being of a multiplicative character, these conditions are stated in terms of the joint behaviour of ‘norms’ of functions in $L_q(\mathbb R^n)$ and Besov spaces $B_{r,\infty}^s(\mathbb R^n)$.
Keywords: Hardy spaces, Wiener algebra.
Mots-clés : Fourier multipliers, Besov spaces
@article{IM2_2014_78_2_a4,
     author = {Yu. S. Kolomoitsev},
     title = {Multiplicative sufficient conditions for {Fourier} multipliers},
     journal = {Izvestiya. Mathematics },
     pages = {354--374},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_2_a4/}
}
TY  - JOUR
AU  - Yu. S. Kolomoitsev
TI  - Multiplicative sufficient conditions for Fourier multipliers
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 354
EP  - 374
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_2_a4/
LA  - en
ID  - IM2_2014_78_2_a4
ER  - 
%0 Journal Article
%A Yu. S. Kolomoitsev
%T Multiplicative sufficient conditions for Fourier multipliers
%J Izvestiya. Mathematics 
%D 2014
%P 354-374
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_2_a4/
%G en
%F IM2_2014_78_2_a4
Yu. S. Kolomoitsev. Multiplicative sufficient conditions for Fourier multipliers. Izvestiya. Mathematics , Tome 78 (2014) no. 2, pp. 354-374. http://geodesic.mathdoc.fr/item/IM2_2014_78_2_a4/

[1] S. G. Mikhlin, “O multiplikatorakh integralov Fure”, Dokl. AN SSSR, 109:4 (1956), 701–703 | MR

[2] L. Hörmander, “Estimates for translation invariant operators in $L^p$ spaces”, Acta Math., 104:1–2 (1960), 93–140 | DOI | MR | Zbl

[3] W. Littman, “Multipliers in $L^p$ and interpolation”, Bull. Amer. Math. Soc., 71 (1965), 764–766 | DOI | MR | Zbl

[4] J. Peetre, “Applications de la théorie des espaces d'interpolation dans l'analyse harmonique”, Ricerche Mat., 15 (1966), 3–36 | MR | Zbl

[5] Ch. Fefferman, E. M. Stein, “$H^p$ spaces of several variables”, Acta Math., 129:3–4 (1972), 137–193 | DOI | MR | Zbl

[6] A. P. Calderón, A. Torchinsky, “Parabolic maximal functions associated with a distribution. II”, Advances in Math., 24:2 (1977), 101–171 | DOI | MR | Zbl

[7] A. Miyachi, “On some Fourier multipliers for $H^p(\mathbb R^n)$”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27:1 (1980), 157–179 | MR | Zbl

[8] A. Miyachi, “On some singular Fourier multipliers”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28:2 (1981), 267–315 | MR | Zbl

[9] A. Baernstein II, E. T. Sawyer, “Embedding and multiplier theorems for $H^p(\mathbb{R}^n)$”, Mem. Amer. Math. Soc., 53, No 318, Amer. Math. Soc, Providence, RI, 1985 | MR | Zbl

[10] O. V. Besov, “On Hörmander's theorem on Fourier multipliers”, Proc. Steklov Inst. Math., 173 (1987), 1–12 | MR | Zbl | Zbl

[11] P. I. Lizorkin, “Limiting cases of theorems on $\mathscr F L_p$-multipliers”, Proc. Steklov Inst. Math., 173 (1987), 1–12 | MR | Zbl | Zbl

[12] C. W. Onneweer, T. S. Quek, “On $H^p(\mathbb{R}^n)$-multipliers of mixed-norm type”, Proc. Amer. Math. Soc., 121:2 (1994), 543–552 | MR | Zbl

[13] R. M. Trigub, “Multipliers in the Hardy spaces $H_p(D^m)$ with $p\in (0,1]$ and approximation properties of summability methods for power series”, Sb. Math., 188:4 (1997), 621–638 | DOI | DOI | MR | Zbl

[14] Yu. S. Kolomoitsev, “Generalization of one sufficient condition for Fourier multipliers”, Ukrainian Math. J., 64:10 (2013), 1562–1571 | DOI | MR | Zbl

[15] E. Liflyand, R. Trigub, “Conditions for the absolute convergence of Fourier integrals”, J. Approx. Theory, 163:4 (2011), 438–459 | DOI | MR | Zbl

[16] E. Liflyand, “On absolute convergence of Fourier integrals”, Real Anal. Exchange, 36:2 (2010), 353–360 | MR | Zbl

[17] E. Liflyand, S. Samko, R. Trigub, “The Wiener algebra of absolutely convergent Fourier integrals: an overview”, Anal. Math. Phys., 2:1 (2012), 1–68 | DOI | MR | Zbl

[18] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970 | MR | MR | Zbl | Zbl

[19] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | MR | Zbl

[20] A. Beurling, “Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionnelle”, Proc. IX Congrès de Math. Scand., Helsingfors, 1938, 345–366 | Zbl

[21] J. Löfström, “Besov spaces in theory of approximation”, Ann. Mat. Pura Appl. (4), 85 (1970), 93–184 | DOI | MR | Zbl

[22] H. Triebel, Theory of function spaces, Monogr. Math., 78, Birkhaüser, Basel–Boston–Stuttgart, 1983 | MR | MR | Zbl | Zbl

[23] J. Peetre, New thoughts on Besov spaces, Duke Univ. Press, Durham, NC, 1976 | MR | Zbl

[24] S. M. Nikolśkiǐ, Approximation of functions of several variables and imbedding theorems, Springer-Verlag, New York–Heidelberg, 1975 | MR | MR | Zbl | Zbl

[25] O. V. Besov, V. P. Il'in, S. M. Nikol'skiĭ, Integral representations of functions and imbedding theorems, v. I, II, Winston, Washington, DC; Wiley, New York–Toronto, ON–London, 1979 | MR | MR | Zbl | Zbl

[26] S. Wainger, “Special trigonometric series in $k$-dimensions”, Mem. Amer. Math. Soc., 59, Amer. Math. Soc, Providence, RI, 1965 | MR | Zbl

[27] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl | Zbl