On the standard conjecture for complex 4-dimensional elliptic varieties and compactifications of N\'eron minimal models
Izvestiya. Mathematics , Tome 78 (2014) no. 1, pp. 169-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the Grothendieck standard conjecture $B(X)$ of Lefschetz type on the algebraicity of operators $*$ and $\Lambda$ of Hodge theory holds for every smooth complex projective model $X$ of the fibre product $X_1\times_CX_2$, where $X_1\to C$ is an elliptic surface over a smooth projective curve $C$ and $X_2\to C$ is a family of K3 surfaces with semistable degenerations of rational type such that $\operatorname{rank}\operatorname{NS}(X_{2s})\ne18$ for a generic geometric fibre $X_{2s}$. We also show that $B(X)$ holds for any smooth projective compactification $X$ of the Néron minimal model of an Abelian scheme of relative dimension $3$ over an affine curve provided that the generic scheme fibre is an absolutely simple Abelian variety with reductions of multiplicative type at all infinite places.
Keywords: elliptic variety, K3 surface, semistable degeneration of rational type, algebraic cycle, Néron minimal model, reduction of multiplicative type.
Mots-clés : standard conjecture of Lefschetz type
@article{IM2_2014_78_1_a7,
     author = {S. G. Tankeev},
     title = {On the standard conjecture for complex 4-dimensional elliptic varieties and compactifications of {N\'eron} minimal models},
     journal = {Izvestiya. Mathematics },
     pages = {169--200},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a7/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On the standard conjecture for complex 4-dimensional elliptic varieties and compactifications of N\'eron minimal models
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 169
EP  - 200
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a7/
LA  - en
ID  - IM2_2014_78_1_a7
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On the standard conjecture for complex 4-dimensional elliptic varieties and compactifications of N\'eron minimal models
%J Izvestiya. Mathematics 
%D 2014
%P 169-200
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a7/
%G en
%F IM2_2014_78_1_a7
S. G. Tankeev. On the standard conjecture for complex 4-dimensional elliptic varieties and compactifications of N\'eron minimal models. Izvestiya. Mathematics , Tome 78 (2014) no. 1, pp. 169-200. http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a7/

[1] A. Grothendieck, “Standard conjectures on algebraic cycles”, Algebraic geometry, Internat. Colloq. (Bombay, 1968), Oxford Univ. Press, London, 1969, 193–199 | MR | Zbl

[2] D. I. Lieberman, “Numerical and homological equivalence of algebraic cycles on Hodge manifolds”, Amer. J. Math., 90:2 (1968), 366–374 | DOI | MR | Zbl

[3] S. G. Tankeev, “On the standard conjecture of Lefschetz type for complex projective threefolds. II”, Izv. Math., 75:5 (2011), 1047–1062 | DOI | MR | Zbl

[4] S. G. Tankeev, “On the standard conjecture for complex 4-dimensional elliptic varieties”, Izv. Math., 76:5 (2012), 967–990 | DOI | DOI | MR | Zbl

[5] Vic. S. Kulikov, “Degenerations of K3 surfaces and Enriques surfaces”, Math. USSR-Izv., 11:5 (1977), 957–989 | DOI | MR | Zbl | Zbl

[6] S. L. Kleiman, “The standard conjectures”, Motives, Part I (Seattle, WA, USA, 1991), Proc. Sympos. Pure Math., 55, Amer. Math. Soc., Providence, RI, 1994, 3–20 | MR | Zbl

[7] S. L. Kleiman, “Algebraic cycles and the Weil conjectures”, Dix esposés sur la cohomologie des schémas, North-Holland, Amsterdam; Masson, Paris, 1968, 359–386 | MR | Zbl

[8] S. G. Tankeev, “Monoidal transformations and conjectures on algebraic cycles”, Izv. Math., 71:3 (2007), 629–655 | DOI | MR | Zbl

[9] G. Kempf, F. F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Math., 339, Springer-Verlag, Berlin–New York, 1973 | DOI | MR | Zbl

[10] S. G. Tankeev, “On the standard conjecture of Lefschetz type for complex projective threefolds”, Izv. Math., 74:1 (2010), 175–196 | DOI | MR | Zbl

[11] W. Schmid, “Variation of Hodge structure: The singularities of the period mapping”, Invent. Math., 22:3–4 (1973), 211–319 | DOI | MR | Zbl

[12] P. Deligne, “Théorie de Hodge. II”, Inst. Hautes Études Sci. Publ. Math., 40:1 (1971), 5–57 | DOI | MR | Zbl

[13] Yu. G. Zarkhin, “Weights of simple Lie algebras in the cohomology of algebraic varieties”, Math. USSR-Izv., 24:2 (1985), 245–281 | DOI | MR | Zbl

[14] S. Zucker, “Hodge theory with degenerating coefficients: $L_2$ cohomology in the Poincaré metric”, Ann. of Math. (2), 109:3 (1979), 415–476 | DOI | MR | Zbl

[15] C. H. Clemens, “Degeneration of Kähler manifolds”, Duke Math. J., 44:2 (1977), 215–290 | DOI | MR | Zbl

[16] P. Deligne, “Théorie de Hodge. III”, Inst. Hautes Études Sci. Publ. Math., 44:1 (1974), 5–77 | DOI | MR | Zbl

[17] N. Bourbaki, Éléments de mathématique, Algèbre. Ch. 10: Algèbre homologique, Masson, Paris, 1980 | MR | MR | Zbl | Zbl

[18] Ph. Griffiths, W. Schmid, “Recent developments in Hodge theory: a discussion of techniques and results”, Discrete subgroups of Lie groups and applicatons to moduli (Bombay, 1973), Oxford Univ. Press, Bombay, 1975, 31–127 | MR | Zbl

[19] M.-H. Saito, S. Zucker, “Classification of non-rigid families of K3 surfaces and a finiteness theorem of Arakelov type”, Math. Ann., 289:1 (1991), 1–31 | DOI | MR | Zbl

[20] C. A. M. Peters, “Rigidity for variations of Hodge structure and Arakelov-type finiteness theorems”, Compositio Math., 75:1 (1990), 113–126 | MR | Zbl

[21] B. B. Gordon, “A survey of the Hodge conjecture for Abelian varieties”, Appendix B, A survey of the Hodge conjecture, CRM Monogr. Ser., 10, Amer. Math. Soc., Providence, RI, 1999, 297–356 | MR | Zbl

[22] Yu. G. Zarhin, “Hodge groups of $K3$ surfaces”, J. Reine Angew. Math., 341 (1983), 193–220 | MR | Zbl

[23] Ph. Griffiths, J. Harris, Principles of algebraic geometry, Wiley, New York, 1978 | MR | MR | Zbl | Zbl

[24] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg–Berlin, 1977 | MR | MR | Zbl | Zbl

[25] H. Hironaka, “Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II”, Ann. of Math. (2), 79:2 (1964), 109–326 | DOI | MR | Zbl

[26] J. Harris, Algebraic geometry, Grad. Texts in Math., 133, Springer-Verlag, New York, 1992 | DOI | MR | Zbl

[27] Yu. I. Manin, “Lectures on $K$-functor in algebraic geometry”, Russian Math. Surveys, 24:5 (1969), 1–89 | DOI | MR | Zbl | Zbl

[28] J. Lewis, A survey of the Hodge conjecture, CRM Monogr. Ser., 10, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[29] Vic. S. Kulikov, P. F. Kurchanov, “Complex algebraic varieties: Periods of integrals and Hodge structures”, Algebraic geometry III, Encyclopaedia Math. Sci., 36, Springer-Verlag, Berlin, 1998, 1–217 | MR | Zbl | Zbl

[30] N. Burbaki, Gruppy i algebry Li, Gl. 1–3: Algebry Li, svobodnye algebry Li i gruppy Li, Mir, M., 1976 ; Гл. 4–6: Группы Кокстера и системы Титса. Группы, порожденные отражениями. Системы корней, Мир, М., 1972 ; Гл. 7–8: Подалгебры Картана, регулярные элементы, расщепляемые полупростые алгебры Ли, Мир, М., 1978 ; N. Bourbaki, Éléments de mathématique. Groupes et algèbres de Lie, Chap. I: Algèbres de Lie, Chap. II: Algèbres de Lie libres, Chap. III: Groupes de Lie, Hermann Cie, Paris, 1971–1972 ; Chap. IV: Groupes de Coxeter et systèmes de Tits, Chap. V: Groupes engendrés par des réflexions, Chap. VI: Systèmes de racines, Hermann, Paris, 1968 ; Chap. VII: Sous-algèbres de Cartan, éléments réguliers, Chap. VIII: Algèbres de Lie semi-simples déployées, Hermann, Paris, 1975 | MR | MR | Zbl | MR | MR | Zbl | MR | Zbl | MR | Zbl

[31] G. Shimura, “Reduction of algebraic varieties with respect to a discrete valuation of the basic field”, Amer. J. Math., 77:1 (1955), 134–176 | DOI | MR | Zbl

[32] G. E. Bredon, Sheaf theory, McGraw-Hill, New York–Toronto–London, 1967 | MR | MR | Zbl | Zbl

[33] P. Deligne, D. Mumford, “The irreducibility of the space of curves of given genus”, Inst. Hautes Études Sci. Publ. Math., 36:1 (1969), 75–109 | DOI | MR | Zbl

[34] D. Mumford, “An analytic construction of degenerating curves over complete local rings”, Compositio Math., 24:2 (1972), 129–174 | MR | Zbl | Zbl

[35] V. V. Shokurov, “Algebraic curves and their Jacobians”, Algebraic Geometry III, Encyclopaedia Math. Sci., 36, Springer-Verlag, Berlin, 1998, 219–261 | MR | Zbl | Zbl