On the structure of Artin $L$-functions
Izvestiya. Mathematics , Tome 78 (2014) no. 1, pp. 154-168.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the generating Artin $L$-function $$ L(z)=L(z,f)=\exp\Bigl(\,\sum_{\nu=1}^{\infty}\frac{T_\nu}{\nu} z^\nu\Bigr) $$ for the character sums $$ T_\nu=\sum_{x_1,\dots,x_n\in\mathbb F_{q^\nu}}\psi_\nu(f(x_1,\dots,x_n)), $$ where $\mathbb F_q$ is a finite field, $\mathbb F_{q^\nu}$ is a finite extension of $\mathbb F_q$, $\psi_\nu(\alpha)$ is a non-trivial additive character of $\mathbb F_{q^\nu}$, and $f\in\mathbb F_q[x_1,\dots,x_n]$ is a polynomial of degree $d\geqslant 2$, and give an elementary proof of Bombieri's conjecture on the algebraic structure of $L(z)$ in the case $n=2$.
Keywords: finite fields, sums of characters for polynomials in many variables, Artin $L$-function, polarized symmetric polynomials in many variables, Waring's theorem on symmetric polynomials.
Mots-clés : Bombieri's conjecture
@article{IM2_2014_78_1_a6,
     author = {S. A. Stepanov},
     title = {On the structure of {Artin} $L$-functions},
     journal = {Izvestiya. Mathematics },
     pages = {154--168},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a6/}
}
TY  - JOUR
AU  - S. A. Stepanov
TI  - On the structure of Artin $L$-functions
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 154
EP  - 168
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a6/
LA  - en
ID  - IM2_2014_78_1_a6
ER  - 
%0 Journal Article
%A S. A. Stepanov
%T On the structure of Artin $L$-functions
%J Izvestiya. Mathematics 
%D 2014
%P 154-168
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a6/
%G en
%F IM2_2014_78_1_a6
S. A. Stepanov. On the structure of Artin $L$-functions. Izvestiya. Mathematics , Tome 78 (2014) no. 1, pp. 154-168. http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a6/

[1] E. Artin, “Quadratische Körper im Gebiete der höheren Kongruenzen. I, II”, Math. Zeitschr., 19:1 (1924), 153–246 | DOI | Zbl

[2] A. Weil, Sur les courbes algébriques et les variétés qui s'en déduisent, Hermann, Paris, 1948 | MR | Zbl

[3] S. A. Stepanov, Arithmetic of algebraic curves, Monogr. Contemp. Math., Consultants Bureau, New York, 1994 | MR | MR | Zbl | Zbl

[4] A. Grothendieck, “Formule de Lefschetz et rationalité des fonctions $L$”, Séminaire Bourbaki, v. 9, Exp. No. 279, Soc. Math. France, Paris, 1966, 41–55 | MR | Zbl

[5] E. Bombieri, “On exponential sums in finite fields”, Amer. J. Math., 88 (1966), 71–105 | DOI | MR | Zbl

[6] A. Weil, “Number of solutions of equations in finite fields”, Bull. Amer. Math. Soc., 55 (1949), 497–508 | DOI | MR | Zbl

[7] P. Deligne, “La conjecture de Weil. I”, Inst. Hautes Etudes Sci. Publ. Math., 43:1 (1974), 273–307 | DOI | MR | MR | Zbl | Zbl

[8] G. I. Perel'muter, “Estimate of a multiple sum involving the legendre symbol”, Math. Notes, 18:3 (1975), 840–844 | DOI | MR | Zbl | Zbl

[9] D. Hilbert, “Ueber die vollen Invariantensysteme”, Math. Ann., 42:3 (1893), 313–373 | DOI | MR | Zbl

[10] E. Noether, “Der Endlichkeitssatz der Invarianten endlicher Gruppen”, Math. Ann., 77:1 (1916), 89–92 | DOI | MR | Zbl

[11] H. Weyl, The classical groups, their invariants and representations, Princeton Univ. Press, Princeton, NJ, 1946 | MR | Zbl

[12] E. Noether, “Der Endlichkeitssatz der Invarianten endlicher linearer Gruppen der Charakteristik $p$”, Nachr. Ges. Wiss. Göttingen, 1926, 28–35 | Zbl

[13] D. R. Richman, “Explicit generators of the invariants of finite groups”, Adv. Math., 124:1 (1996), 49–76 | DOI | MR | Zbl

[14] S. A. Stepanov, “Polynomial invariants of finite groups over fields of prime characteristics”, Discr. Math. Appl., 9:4 (1999), 343–354 | DOI | MR | Zbl

[15] E. Waring, Mediationes algebraicae, Cambridge Univ. Press, Cambridge, 1782

[16] J. Riordan, An introduction to combinatorial analysis, Wiley, New York, 1958 | MR | Zbl | Zbl