On the structure of Artin $L$-functions
Izvestiya. Mathematics , Tome 78 (2014) no. 1, pp. 154-168

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the generating Artin $L$-function $$ L(z)=L(z,f)=\exp\Bigl(\,\sum_{\nu=1}^{\infty}\frac{T_\nu}{\nu} z^\nu\Bigr) $$ for the character sums $$ T_\nu=\sum_{x_1,\dots,x_n\in\mathbb F_{q^\nu}}\psi_\nu(f(x_1,\dots,x_n)), $$ where $\mathbb F_q$ is a finite field, $\mathbb F_{q^\nu}$ is a finite extension of $\mathbb F_q$, $\psi_\nu(\alpha)$ is a non-trivial additive character of $\mathbb F_{q^\nu}$, and $f\in\mathbb F_q[x_1,\dots,x_n]$ is a polynomial of degree $d\geqslant 2$, and give an elementary proof of Bombieri's conjecture on the algebraic structure of $L(z)$ in the case $n=2$.
Keywords: finite fields, sums of characters for polynomials in many variables, Artin $L$-function, polarized symmetric polynomials in many variables, Waring's theorem on symmetric polynomials.
Mots-clés : Bombieri's conjecture
@article{IM2_2014_78_1_a6,
     author = {S. A. Stepanov},
     title = {On the structure of {Artin} $L$-functions},
     journal = {Izvestiya. Mathematics },
     pages = {154--168},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a6/}
}
TY  - JOUR
AU  - S. A. Stepanov
TI  - On the structure of Artin $L$-functions
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 154
EP  - 168
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a6/
LA  - en
ID  - IM2_2014_78_1_a6
ER  - 
%0 Journal Article
%A S. A. Stepanov
%T On the structure of Artin $L$-functions
%J Izvestiya. Mathematics 
%D 2014
%P 154-168
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a6/
%G en
%F IM2_2014_78_1_a6
S. A. Stepanov. On the structure of Artin $L$-functions. Izvestiya. Mathematics , Tome 78 (2014) no. 1, pp. 154-168. http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a6/