Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2014_78_1_a5, author = {S. S. Platonov}, title = {Fourier--Jacobi harmonic analysis and approximation of functions}, journal = {Izvestiya. Mathematics }, pages = {106--153}, publisher = {mathdoc}, volume = {78}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a5/} }
S. S. Platonov. Fourier--Jacobi harmonic analysis and approximation of functions. Izvestiya. Mathematics , Tome 78 (2014) no. 1, pp. 106-153. http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a5/
[1] J. Löfstróm, J. Peetre, “Approximation theorems connected with generalized translations”, Math. Ann., 181 (1969), 255–268 | DOI | MR | Zbl
[2] Z. Ditzian, V. Totik, Moduli of smoothness, Springer Ser. Comput. Math., 9, Springer-Verlag, New York, 1987 | MR | Zbl
[3] M. K. Potapov, “On the application of a generalized translation operator in the approximation theory”, Moscow Univ. Math. Bull., 53:3 (1998), 37–47 | MR | Zbl
[4] M. K. Potapov, “Properties of a family of operators of generalized translation with application to approximation theory”, Math. Notes, 69:3 (2001), 373–386 | DOI | DOI | MR | Zbl
[5] S. S. Platonov, “Bessel harmonic analysis and approximation of functions on the half-line”, Izv. Math., 71:5 (2007), 1001–1048 | DOI | DOI | MR | Zbl
[6] S. S. Platonov, “Bessel generalized translations and some problems of approximation theory for functions on the half-line”, Siberian Math. J., 50:1 (2009), 123–140 | DOI | MR | Zbl
[7] Iong Ping Li, Chun Mei Su, V. I. Ivanov, “Some problems of approximation theory in the spaces $L_p$ on the line with power weight”, Math. Notes, 90:3 (2011), 344–364 | DOI | DOI | MR
[8] P. L. Butzer, R. L. Stens, M. Wehrens, “Higher order moduli of continuity based on the Jacobi translation operator and best approximation”, C. R. Math. Rep. Acad. Sci. Canada, 2:2 (1980), 83–88 | MR | Zbl
[9] P. L. Butzer, S. Jansche, R. L. Stens, “Functional analytic methods in the solution of the fundamental theorems on best-weighted algebraic approximation”, Approximation theory (Memphis, TN, 1991), Lecture Notes in Pure and Appl. Math., 138, Dekker, New York, 1992, 151–205 | MR | Zbl
[10] M. K. Potapov, “Approximation by algebraic polynomials in an integral metric with Jacobi weight”, Moscow Univ. Math. Bull., 38:4 (1983), 48–57 | MR | Zbl | Zbl
[11] Z. Ditzian, M. Felten, “Averages using translation induced by Laguerre and Jacobi expansions”, Constr. Approx., 16:1 (2000), 115–143 | DOI | MR | Zbl
[12] A. G. Babenko, “An exact Jackson–Stechkin inequality for $L^2$-approximation on the interval with the Jacobi weight and on projective spaces”, Izv. Math., 62:6 (1998), 1095–1119 | DOI | DOI | MR | Zbl
[13] A. F. Dzhafarov, “Averaged moduli of continuity and some of their connections with best approximations”, Soviet Math. Dokl., 18:2 (1978), 1205–1209 | MR | Zbl
[14] S. Rafalson, “An extremal relation of the theory of approximation of functions by algebraic polynomials”, J. Approx. Theory, 110:2 (2001), 146–170 | DOI | MR | Zbl
[15] G. K. Lebed, “Nekotorye voprosy priblizheniya funktsii odnoi peremennoi algebraicheskimi mnogochlenami”, Dokl. AN SSSR, 118:2 (1958), 239–242 | MR | Zbl
[16] M. K. Potapov, “O priblizhenii funktsii algebraicheskimi polinomami v metrike $L_p$”, Issledovaniya po sovremennym problemam konstruktivnoi teorii funktsii, GIFML, M., 1961, 64–69 | MR | Zbl
[17] G. V. Zhidkov, “Constructive characterization of a class of nonperiodic functions”, Soviet Math. Dokl., 7 (1966), 1036–1040 | MR | Zbl
[18] S. Z. Rafalson, “O priblizhenii funktsii summami Fure–Yakobi”, Izv. vuzov. Matem., 1968, no. 4, 54–62 | MR | Zbl
[19] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., Providence, RI, 1959 | MR | Zbl | Zbl
[20] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, vol. II, McGraw-Hill, New York–Toronto–London, 1953 | MR | MR | Zbl | Zbl
[21] R. Askey, S. Wainger, “A convolution structure for Jacobi series”, Amer. J. Math., 91 (1969), 463–485 | DOI | MR | Zbl
[22] G. Gasper, “Positivity and the convolution structure for Jacobi series”, Ann. of Math. (2), 93:1 (1971), 112–118 | DOI | MR | Zbl
[23] H. Johnen, K. Scherer, “On the equivalence of the $K$-functional and moduli of continuity and some applications”, Constructive theory of functions of several variables (Oberwolfach, 1976), Lect. Notes Math., 571, 1977, 119–140 | DOI | MR | Zbl
[24] R. A. DeVore, G. G. Lorentz, Constructive approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993 | MR | Zbl
[25] A. L. Besse, Manifolds all of whose geodesics are closed, Ergeb. Math. Grenzgeb., 93, Springer-Verlag, Berlin–New York, 1978 | MR | MR | Zbl
[26] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure Appl. Math., 80, Academic Press, New York–San Francisco–London, 1978 | MR | Zbl
[27] S. Helgason, Groups and geometric analysis, Pure Appl. Math., 113, Academic Press, Orlando, FL, 1984 | MR | MR | Zbl
[28] S. Helgason, Geometric analysis on symmetric spaces, Math. Surveys Monogr., 39, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl
[29] A. V. Shchepetilov, Calculus and mechanics on two-point homogeneous Riemannian spaces, Lecture Notes in Phys., 707, Springer-Verlag, Berlin, 2006 | MR | Zbl
[30] V. V. Volchkov, Vit. V. Volchkov, Harmonic analysis of mean periodic functions on symmetric spaces and the Heisenberg group, Springer Monogr. Math., Springer-Verlag, Berlin, 2009 | DOI | MR | Zbl
[31] S. S. Platonov, “Some problems in the theory of approximation of functions on compact homogeneous manifolds”, Sb. Math., 200:6 (2009), 845–885 | DOI | DOI | MR | Zbl
[32] R. Askey, Orthogonal polynomials and special functions, SIAM, Philadelphia, PA, 1975 | MR
[33] G. Gasper, “Banach algebras for Jacobi series and positivity of a kernel”, Ann. of Math. (2), 95 (1972), 261–280 | DOI | MR | Zbl
[34] H. Bavinck, “A special class of Jacobi series and some applications”, J. Math. Anal. Appl., 37 (1972), 767–797 | DOI | MR | Zbl
[35] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, Academic Press, New York–London–Toronto, ON, 1980 | MR | MR | Zbl | Zbl
[36] V. P. Khavin, “Methods and structure of commutative harmonic analysis”, Commutative harmonic analysis I. General survey. Classical aspects, Encycl. Math. Sci., 15, Springer, Berlin, 1991, 1–111 | MR | MR | Zbl | Zbl
[37] A. H. Zemanian, Generalized integral transformations, Wiley, New York, 1968 | MR | MR | Zbl | Zbl
[38] H.-J. Glaeske, Th. Runst, “The discrete Jacobi transform of generalized functions”, Math. Nachr., 132 (1987), 239–251 | DOI | MR | Zbl
[39] R. S. Pathak, S. R. Verma, “Jacobi convolution of distributions”, Math. Student, 76:1–4 (2007), 17–28 | MR | Zbl
[40] J. D. Betancor, J. J. Betancor, J. M. R. Mendez-Pérez, “Generalized convolution for the discrete Jacobi transformation”, Acta Math. Hungar., 96:1–2 (2002), 1–19 | DOI | MR | Zbl
[41] S. M. Nikolskii, “Obobschenie odnogo iz neravenstv S. N. Bernshteina”, Dokl. AN SSSR, 60:9 (1948), 1507–1510 | MR | Zbl
[42] S. B. Stechkin, “Obobschenie nekotorykh neravenstv S. N. Bernshteina”, Dokl. AN SSSR, 60:9 (1948), 1511–1514 | MR | Zbl
[43] A. F. Timan, Theory of approximation of functions of a real variable, Pergamon Press, New York, 1963 | MR | MR | Zbl
[44] S. M. Nikolśkiǐ, Approximation of functions of several variables and imbedding theorems, Springer-Verlag, New York–Heidelberg, 1975 | MR | MR | Zbl | Zbl
[45] S. B. Stechkin, “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matem., 15:3 (1951), 219–242 | MR | Zbl
[46] A. F. Timan, M. F. Timan, “Obobschennyi modul nepreryvnosti i nailuchshee priblizhenie v srednem”, Dokl. AN SSSR, 71:1 (1950), 17–20 | MR | Zbl