Fourier--Jacobi harmonic analysis and approximation of functions
Izvestiya. Mathematics , Tome 78 (2014) no. 1, pp. 106-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

We use the methods of Fourier–Jacobi harmonic analysis to study problems of the approximation of functions by algebraic polynomials in weighted function spaces on $[-1,1]$. We prove analogues of Jackson's direct theorem for the moduli of smoothness of all orders constructed on the basis of Jacobi generalized translations. The moduli of smoothness are shown to be equivalent to $K$-functionals constructed from Sobolev-type spaces. We define Nikol'skii–Besov spaces for the Jacobi generalized translation and describe them in terms of best approximations. We also prove analogues of some inverse theorems of Stechkin.
Keywords: Fourier–Jacobi harmonic analysis, approximation of functions, generalized translations, Jacobi polynomials, function spaces.
@article{IM2_2014_78_1_a5,
     author = {S. S. Platonov},
     title = {Fourier--Jacobi harmonic analysis and approximation of functions},
     journal = {Izvestiya. Mathematics },
     pages = {106--153},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a5/}
}
TY  - JOUR
AU  - S. S. Platonov
TI  - Fourier--Jacobi harmonic analysis and approximation of functions
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 106
EP  - 153
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a5/
LA  - en
ID  - IM2_2014_78_1_a5
ER  - 
%0 Journal Article
%A S. S. Platonov
%T Fourier--Jacobi harmonic analysis and approximation of functions
%J Izvestiya. Mathematics 
%D 2014
%P 106-153
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a5/
%G en
%F IM2_2014_78_1_a5
S. S. Platonov. Fourier--Jacobi harmonic analysis and approximation of functions. Izvestiya. Mathematics , Tome 78 (2014) no. 1, pp. 106-153. http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a5/

[1] J. Löfstróm, J. Peetre, “Approximation theorems connected with generalized translations”, Math. Ann., 181 (1969), 255–268 | DOI | MR | Zbl

[2] Z. Ditzian, V. Totik, Moduli of smoothness, Springer Ser. Comput. Math., 9, Springer-Verlag, New York, 1987 | MR | Zbl

[3] M. K. Potapov, “On the application of a generalized translation operator in the approximation theory”, Moscow Univ. Math. Bull., 53:3 (1998), 37–47 | MR | Zbl

[4] M. K. Potapov, “Properties of a family of operators of generalized translation with application to approximation theory”, Math. Notes, 69:3 (2001), 373–386 | DOI | DOI | MR | Zbl

[5] S. S. Platonov, “Bessel harmonic analysis and approximation of functions on the half-line”, Izv. Math., 71:5 (2007), 1001–1048 | DOI | DOI | MR | Zbl

[6] S. S. Platonov, “Bessel generalized translations and some problems of approximation theory for functions on the half-line”, Siberian Math. J., 50:1 (2009), 123–140 | DOI | MR | Zbl

[7] Iong Ping Li, Chun Mei Su, V. I. Ivanov, “Some problems of approximation theory in the spaces $L_p$ on the line with power weight”, Math. Notes, 90:3 (2011), 344–364 | DOI | DOI | MR

[8] P. L. Butzer, R. L. Stens, M. Wehrens, “Higher order moduli of continuity based on the Jacobi translation operator and best approximation”, C. R. Math. Rep. Acad. Sci. Canada, 2:2 (1980), 83–88 | MR | Zbl

[9] P. L. Butzer, S. Jansche, R. L. Stens, “Functional analytic methods in the solution of the fundamental theorems on best-weighted algebraic approximation”, Approximation theory (Memphis, TN, 1991), Lecture Notes in Pure and Appl. Math., 138, Dekker, New York, 1992, 151–205 | MR | Zbl

[10] M. K. Potapov, “Approximation by algebraic polynomials in an integral metric with Jacobi weight”, Moscow Univ. Math. Bull., 38:4 (1983), 48–57 | MR | Zbl | Zbl

[11] Z. Ditzian, M. Felten, “Averages using translation induced by Laguerre and Jacobi expansions”, Constr. Approx., 16:1 (2000), 115–143 | DOI | MR | Zbl

[12] A. G. Babenko, “An exact Jackson–Stechkin inequality for $L^2$-approximation on the interval with the Jacobi weight and on projective spaces”, Izv. Math., 62:6 (1998), 1095–1119 | DOI | DOI | MR | Zbl

[13] A. F. Dzhafarov, “Averaged moduli of continuity and some of their connections with best approximations”, Soviet Math. Dokl., 18:2 (1978), 1205–1209 | MR | Zbl

[14] S. Rafalson, “An extremal relation of the theory of approximation of functions by algebraic polynomials”, J. Approx. Theory, 110:2 (2001), 146–170 | DOI | MR | Zbl

[15] G. K. Lebed, “Nekotorye voprosy priblizheniya funktsii odnoi peremennoi algebraicheskimi mnogochlenami”, Dokl. AN SSSR, 118:2 (1958), 239–242 | MR | Zbl

[16] M. K. Potapov, “O priblizhenii funktsii algebraicheskimi polinomami v metrike $L_p$”, Issledovaniya po sovremennym problemam konstruktivnoi teorii funktsii, GIFML, M., 1961, 64–69 | MR | Zbl

[17] G. V. Zhidkov, “Constructive characterization of a class of nonperiodic functions”, Soviet Math. Dokl., 7 (1966), 1036–1040 | MR | Zbl

[18] S. Z. Rafalson, “O priblizhenii funktsii summami Fure–Yakobi”, Izv. vuzov. Matem., 1968, no. 4, 54–62 | MR | Zbl

[19] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., Providence, RI, 1959 | MR | Zbl | Zbl

[20] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, vol. II, McGraw-Hill, New York–Toronto–London, 1953 | MR | MR | Zbl | Zbl

[21] R. Askey, S. Wainger, “A convolution structure for Jacobi series”, Amer. J. Math., 91 (1969), 463–485 | DOI | MR | Zbl

[22] G. Gasper, “Positivity and the convolution structure for Jacobi series”, Ann. of Math. (2), 93:1 (1971), 112–118 | DOI | MR | Zbl

[23] H. Johnen, K. Scherer, “On the equivalence of the $K$-functional and moduli of continuity and some applications”, Constructive theory of functions of several variables (Oberwolfach, 1976), Lect. Notes Math., 571, 1977, 119–140 | DOI | MR | Zbl

[24] R. A. DeVore, G. G. Lorentz, Constructive approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993 | MR | Zbl

[25] A. L. Besse, Manifolds all of whose geodesics are closed, Ergeb. Math. Grenzgeb., 93, Springer-Verlag, Berlin–New York, 1978 | MR | MR | Zbl

[26] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure Appl. Math., 80, Academic Press, New York–San Francisco–London, 1978 | MR | Zbl

[27] S. Helgason, Groups and geometric analysis, Pure Appl. Math., 113, Academic Press, Orlando, FL, 1984 | MR | MR | Zbl

[28] S. Helgason, Geometric analysis on symmetric spaces, Math. Surveys Monogr., 39, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl

[29] A. V. Shchepetilov, Calculus and mechanics on two-point homogeneous Riemannian spaces, Lecture Notes in Phys., 707, Springer-Verlag, Berlin, 2006 | MR | Zbl

[30] V. V. Volchkov, Vit. V. Volchkov, Harmonic analysis of mean periodic functions on symmetric spaces and the Heisenberg group, Springer Monogr. Math., Springer-Verlag, Berlin, 2009 | DOI | MR | Zbl

[31] S. S. Platonov, “Some problems in the theory of approximation of functions on compact homogeneous manifolds”, Sb. Math., 200:6 (2009), 845–885 | DOI | DOI | MR | Zbl

[32] R. Askey, Orthogonal polynomials and special functions, SIAM, Philadelphia, PA, 1975 | MR

[33] G. Gasper, “Banach algebras for Jacobi series and positivity of a kernel”, Ann. of Math. (2), 95 (1972), 261–280 | DOI | MR | Zbl

[34] H. Bavinck, “A special class of Jacobi series and some applications”, J. Math. Anal. Appl., 37 (1972), 767–797 | DOI | MR | Zbl

[35] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, Academic Press, New York–London–Toronto, ON, 1980 | MR | MR | Zbl | Zbl

[36] V. P. Khavin, “Methods and structure of commutative harmonic analysis”, Commutative harmonic analysis I. General survey. Classical aspects, Encycl. Math. Sci., 15, Springer, Berlin, 1991, 1–111 | MR | MR | Zbl | Zbl

[37] A. H. Zemanian, Generalized integral transformations, Wiley, New York, 1968 | MR | MR | Zbl | Zbl

[38] H.-J. Glaeske, Th. Runst, “The discrete Jacobi transform of generalized functions”, Math. Nachr., 132 (1987), 239–251 | DOI | MR | Zbl

[39] R. S. Pathak, S. R. Verma, “Jacobi convolution of distributions”, Math. Student, 76:1–4 (2007), 17–28 | MR | Zbl

[40] J. D. Betancor, J. J. Betancor, J. M. R. Mendez-Pérez, “Generalized convolution for the discrete Jacobi transformation”, Acta Math. Hungar., 96:1–2 (2002), 1–19 | DOI | MR | Zbl

[41] S. M. Nikolskii, “Obobschenie odnogo iz neravenstv S. N. Bernshteina”, Dokl. AN SSSR, 60:9 (1948), 1507–1510 | MR | Zbl

[42] S. B. Stechkin, “Obobschenie nekotorykh neravenstv S. N. Bernshteina”, Dokl. AN SSSR, 60:9 (1948), 1511–1514 | MR | Zbl

[43] A. F. Timan, Theory of approximation of functions of a real variable, Pergamon Press, New York, 1963 | MR | MR | Zbl

[44] S. M. Nikolśkiǐ, Approximation of functions of several variables and imbedding theorems, Springer-Verlag, New York–Heidelberg, 1975 | MR | MR | Zbl | Zbl

[45] S. B. Stechkin, “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matem., 15:3 (1951), 219–242 | MR | Zbl

[46] A. F. Timan, M. F. Timan, “Obobschennyi modul nepreryvnosti i nailuchshee priblizhenie v srednem”, Dokl. AN SSSR, 71:1 (1950), 17–20 | MR | Zbl