On the convergence of multiple Haar series
Izvestiya. Mathematics , Tome 78 (2014) no. 1, pp. 90-105

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the rectangular and spherical partial sums of the multiple Fourier–Haar series of an individual summable function may behave differently at almost every point, although it is known that they behave in the same way from the point of view of almost-everywhere convergence in the scale of integral classes: $L(\ln^+L)^{n-1}$ is the best class in both cases. We also find optimal additional conditions under which the spherical convergence of a multiple Fourier–Haar series (general Haar series, lacunary series) follows from its convergence by rectangles, and prove that these conditions are indeed optimal.
Keywords: multiple Haar series, spherical convergence, lacunary series.
Mots-clés : convergence by rectangles
@article{IM2_2014_78_1_a4,
     author = {G. G. Oniani},
     title = {On the convergence of multiple {Haar} series},
     journal = {Izvestiya. Mathematics },
     pages = {90--105},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a4/}
}
TY  - JOUR
AU  - G. G. Oniani
TI  - On the convergence of multiple Haar series
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 90
EP  - 105
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a4/
LA  - en
ID  - IM2_2014_78_1_a4
ER  - 
%0 Journal Article
%A G. G. Oniani
%T On the convergence of multiple Haar series
%J Izvestiya. Mathematics 
%D 2014
%P 90-105
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a4/
%G en
%F IM2_2014_78_1_a4
G. G. Oniani. On the convergence of multiple Haar series. Izvestiya. Mathematics , Tome 78 (2014) no. 1, pp. 90-105. http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a4/