Local two-radii theorems on the multi-dimensional sphere
Izvestiya. Mathematics , Tome 78 (2014) no. 1, pp. 1-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider those functions on the $n$-dimensional sphere that have zero integrals over all geodesic balls with centres in a given set $E$. We obtain a description of such functions in the case when $E$ is a geodesic sphere on $\mathbb S^n$. We also find a criterion for the existence of non-zero functions with this property in the case when the set of centres is the union of two geodesic spheres. We obtain analogues of these results for quasi-analytic classes of functions.
Keywords: two-radii theorems, Legendre functions, spherical harmonics, quasi-analytic classes.
@article{IM2_2014_78_1_a0,
     author = {V. V. Volchkov and Vit. V. Volchkov},
     title = {Local two-radii theorems on the multi-dimensional sphere},
     journal = {Izvestiya. Mathematics },
     pages = {1--21},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a0/}
}
TY  - JOUR
AU  - V. V. Volchkov
AU  - Vit. V. Volchkov
TI  - Local two-radii theorems on the multi-dimensional sphere
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 1
EP  - 21
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a0/
LA  - en
ID  - IM2_2014_78_1_a0
ER  - 
%0 Journal Article
%A V. V. Volchkov
%A Vit. V. Volchkov
%T Local two-radii theorems on the multi-dimensional sphere
%J Izvestiya. Mathematics 
%D 2014
%P 1-21
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a0/
%G en
%F IM2_2014_78_1_a0
V. V. Volchkov; Vit. V. Volchkov. Local two-radii theorems on the multi-dimensional sphere. Izvestiya. Mathematics , Tome 78 (2014) no. 1, pp. 1-21. http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a0/

[1] J. Radon, “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten”, Ber. Verh. Sächs. Akad. Wiss. Leipzig. Math.-Nat. Kl., 69 (1917), 262–277 | Zbl

[2] P. Ungar, “Freak theorem about functions on a sphere”, J. London Math. Soc., 29 (1954), 100–103 | DOI | MR | Zbl

[3] R. Schneider, “Functions on a sphere with vanishing integrals over certain subspheres”, J. Math. Anal. Appl., 26 (1969), 381–384 | DOI | MR | Zbl

[4] C. A. Berenstein, L. Zalcman, “Pompeiu's problem on spaces of constant curvature”, J. Analyse Math., 30:1 (1976), 113–130 | DOI | MR | Zbl

[5] C. A. Berenstein, L. Zalcman, “Pompeiu's problem on symmetric spaces”, Comment. Math. Helv., 55:1 (1980), 593–621 | DOI | MR | Zbl

[6] L. Zalcman, “A bibliographic survey of the Pompeiu problem”, Approximation by solutions of partial differential equations (Hanstholm, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 365, Kluwer Acad. Publ., Dordrecht, 1992, 185–194 | MR | Zbl

[7] V. V. Volchkov, Integral geometry and convolution equations, Kluwer Acad. Publ., Dordrecht, 2003 | MR | Zbl

[8] V. V. Volchkov, Vit. V. Volchkov, Harmonic analysis of mean periodic functions on symmetric spaces and the Heisenberg group, Springer Monogr. Math., Springer-Verlag, London, 2009 | MR | Zbl

[9] E. Badertscher, “The Pompeiu problem on locally symmetric spaces”, J. Anal. Math., 57 (1991), 250–281 | MR | Zbl

[10] M. L. Agranovsky, V. V. Volchkov, L. A. Zalcman, “Conical uniqueness sets for the spherical Radon transform”, Bull. London Math. Soc., 31:2 (1999), 231–236 | DOI | MR | Zbl

[11] V. V. Volchkov, “A definitive version of the local two-radii theorem”, Sb. Math., 186:6 (1995), 783–802 | DOI | MR | Zbl

[12] V. V. Volchkov, “Injectivity sets for the Radon transform over a sphere”, Izv. Math., 63:3 (1999), 481–493 | DOI | DOI | MR | Zbl

[13] L. Zalcman, “Analyticity and the Pompeiu problem”, Arch. Rational Mech. Anal., 47:3 (1972), 237–254 | DOI | MR | Zbl

[14] J. D. Smith, “Harmonic analysis of scalar and vector fields in $\mathbb R^n$”, Proc. Cambridge Philos. Soc., 72:3 (1972), 403–416 | DOI | MR | Zbl

[15] L. Brown, B. M. Schreiber, B. A. Taylor, “Spectral synthesis and the Pompeiu problem”, Ann. Inst. Fourier (Grenoble), 23:3 (1973), 125–154 | DOI | MR | Zbl

[16] C. A. Berenstein, R. Gay, “A local version of the two-circles theorem”, Israel J. Math., 55:3 (1986), 267–288 | DOI | MR | Zbl

[17] Vit. V. Volchkov, “A local two-radii theorem on the sphere”, St. Petersburg Math. J., 16:3 (2005), 453–475 | DOI | MR | Zbl

[18] N. Ya. Vilenkin, Special functions and the theory of group representations, Amer. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl | Zbl

[19] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, vols. I, II, McGraw-Hill, New York–Toronto–London, 1953 | MR | MR | MR | Zbl | Zbl

[20] S. Helgason, Groups and geometric analysis, Pure Appl. Math., 113, Academic Press, Orlando, FL, 1984 | MR | MR | Zbl

[21] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl | Zbl

[22] R. E. A. C. Paley, N. Wiener, Fourier transforms in the complex domain, Amer. Math. Soc. Colloq. Publ., 19, Amer. Math. Soc., New York, 1934 | MR | MR | Zbl | Zbl

[23] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. I, II, Graylock Press, Albany, NY, 1957, 1961 | MR | MR | MR | Zbl | Zbl

[24] L. Hörmander, The analysis of linear partial differential operators, vol. 1, Grundlehren Math. Wiss., 256, Springer-Verlag, Berlin, 1983 | MR | MR | Zbl | Zbl

[25] M. L. Agranovsky, E. T. Quinto, “Geometry of stationary sets for the wave equation in $\mathbb R^n$. The case of finitely supported initial data”, Duke Math. J., 107:1 (2001), 57–84 | DOI | MR | Zbl

[26] S. Lang, $SL_2(\mathbb R)$, Addison-Wesley, Reading, MA, 1975 | MR | MR | Zbl