Local two-radii theorems on the multi-dimensional sphere
Izvestiya. Mathematics , Tome 78 (2014) no. 1, pp. 1-21

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider those functions on the $n$-dimensional sphere that have zero integrals over all geodesic balls with centres in a given set $E$. We obtain a description of such functions in the case when $E$ is a geodesic sphere on $\mathbb S^n$. We also find a criterion for the existence of non-zero functions with this property in the case when the set of centres is the union of two geodesic spheres. We obtain analogues of these results for quasi-analytic classes of functions.
Keywords: two-radii theorems, Legendre functions, spherical harmonics, quasi-analytic classes.
@article{IM2_2014_78_1_a0,
     author = {V. V. Volchkov and Vit. V. Volchkov},
     title = {Local two-radii theorems on the multi-dimensional sphere},
     journal = {Izvestiya. Mathematics },
     pages = {1--21},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a0/}
}
TY  - JOUR
AU  - V. V. Volchkov
AU  - Vit. V. Volchkov
TI  - Local two-radii theorems on the multi-dimensional sphere
JO  - Izvestiya. Mathematics 
PY  - 2014
SP  - 1
EP  - 21
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a0/
LA  - en
ID  - IM2_2014_78_1_a0
ER  - 
%0 Journal Article
%A V. V. Volchkov
%A Vit. V. Volchkov
%T Local two-radii theorems on the multi-dimensional sphere
%J Izvestiya. Mathematics 
%D 2014
%P 1-21
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a0/
%G en
%F IM2_2014_78_1_a0
V. V. Volchkov; Vit. V. Volchkov. Local two-radii theorems on the multi-dimensional sphere. Izvestiya. Mathematics , Tome 78 (2014) no. 1, pp. 1-21. http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a0/