Local two-radii theorems on the multi-dimensional sphere
Izvestiya. Mathematics , Tome 78 (2014) no. 1, pp. 1-21
Voir la notice de l'article provenant de la source Math-Net.Ru
Consider those functions on the $n$-dimensional sphere that have zero
integrals over all geodesic balls with centres in a given set $E$.
We obtain a description of such functions in the case when $E$ is a geodesic
sphere on $\mathbb S^n$. We also find a criterion for the existence
of non-zero functions with this property in the case when the set of centres
is the union of two geodesic spheres. We obtain analogues of these results
for quasi-analytic classes of functions.
Keywords:
two-radii theorems, Legendre functions, spherical harmonics,
quasi-analytic classes.
@article{IM2_2014_78_1_a0,
author = {V. V. Volchkov and Vit. V. Volchkov},
title = {Local two-radii theorems on the multi-dimensional sphere},
journal = {Izvestiya. Mathematics },
pages = {1--21},
publisher = {mathdoc},
volume = {78},
number = {1},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a0/}
}
V. V. Volchkov; Vit. V. Volchkov. Local two-radii theorems on the multi-dimensional sphere. Izvestiya. Mathematics , Tome 78 (2014) no. 1, pp. 1-21. http://geodesic.mathdoc.fr/item/IM2_2014_78_1_a0/