Ergodic means for large values of~$T$ and exact asymptotics of small deviations for a~multi-dimensional Wiener process
Izvestiya. Mathematics , Tome 77 (2013) no. 6, pp. 1224-1259

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove results on exact asymptotics as $T\to\infty$ for the means $\mathsf{E}_{a,c}\exp\bigl\{-\int_0^T g(\mathbf{w}(t))\,dt\bigr\}$ and probabilities $\mathsf{P}_{a,c}\bigl\{\frac1T\int_0^Tg(\mathbf{w}(t))\,dt$, where $\mathbf{w}(t)=(w_1(t),\dots,w_n(t))$, $t\geqslant 0$, is an $n$-dimensional Wiener process, $g(x)$ is a positive continuous function (potential) satisfying certain conditions, $d>0$, and $a,c\in\mathbb{R}^n$ are prescribed vectors. The results are obtained by a new method developed in this paper, the Laplace method for the occupation time of a multi-dimensional Wiener process. We consider examples of monomial and radial potentials and prove results on exact asymptotics of small deviations for the probabilities $\mathsf{P}_0\bigl\{\int_0^1\sum_{j=1}^n|w_j(t)|^p\,dt\varepsilon^p\bigr\}$ as $\varepsilon\to 0$ with a fixed $p>0$.
Keywords: large deviations, Markov processes, Laplace method, action functional, occupation time, multi-dimensional Schrödinger operator.
@article{IM2_2013_77_6_a5,
     author = {V. R. Fatalov},
     title = {Ergodic means for large values of~$T$ and exact asymptotics of small deviations for a~multi-dimensional {Wiener} process},
     journal = {Izvestiya. Mathematics },
     pages = {1224--1259},
     publisher = {mathdoc},
     volume = {77},
     number = {6},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a5/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Ergodic means for large values of~$T$ and exact asymptotics of small deviations for a~multi-dimensional Wiener process
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 1224
EP  - 1259
VL  - 77
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a5/
LA  - en
ID  - IM2_2013_77_6_a5
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Ergodic means for large values of~$T$ and exact asymptotics of small deviations for a~multi-dimensional Wiener process
%J Izvestiya. Mathematics 
%D 2013
%P 1224-1259
%V 77
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a5/
%G en
%F IM2_2013_77_6_a5
V. R. Fatalov. Ergodic means for large values of~$T$ and exact asymptotics of small deviations for a~multi-dimensional Wiener process. Izvestiya. Mathematics , Tome 77 (2013) no. 6, pp. 1224-1259. http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a5/