Ergodic means for large values of~$T$ and exact asymptotics of small deviations for a~multi-dimensional Wiener process
Izvestiya. Mathematics , Tome 77 (2013) no. 6, pp. 1224-1259
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove results on exact asymptotics as $T\to\infty$ for the means $\mathsf{E}_{a,c}\exp\bigl\{-\int_0^T g(\mathbf{w}(t))\,dt\bigr\}$ and probabilities $\mathsf{P}_{a,c}\bigl\{\frac1T\int_0^Tg(\mathbf{w}(t))\,dt$, where $\mathbf{w}(t)=(w_1(t),\dots,w_n(t))$, $t\geqslant 0$, is an $n$-dimensional Wiener process, $g(x)$ is a positive continuous function (potential) satisfying certain conditions, $d>0$, and $a,c\in\mathbb{R}^n$ are prescribed vectors. The results are obtained by a new method developed in this paper, the Laplace method for the occupation time of a multi-dimensional Wiener process. We consider examples of monomial and radial potentials and prove results on exact asymptotics of small deviations for the probabilities $\mathsf{P}_0\bigl\{\int_0^1\sum_{j=1}^n|w_j(t)|^p\,dt\varepsilon^p\bigr\}$ as $\varepsilon\to 0$ with a fixed $p>0$.
Keywords:
large deviations, Markov processes, Laplace method, action functional,
occupation time, multi-dimensional Schrödinger operator.
@article{IM2_2013_77_6_a5,
author = {V. R. Fatalov},
title = {Ergodic means for large values of~$T$ and exact asymptotics of small deviations for a~multi-dimensional {Wiener} process},
journal = {Izvestiya. Mathematics },
pages = {1224--1259},
publisher = {mathdoc},
volume = {77},
number = {6},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a5/}
}
TY - JOUR AU - V. R. Fatalov TI - Ergodic means for large values of~$T$ and exact asymptotics of small deviations for a~multi-dimensional Wiener process JO - Izvestiya. Mathematics PY - 2013 SP - 1224 EP - 1259 VL - 77 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a5/ LA - en ID - IM2_2013_77_6_a5 ER -
%0 Journal Article %A V. R. Fatalov %T Ergodic means for large values of~$T$ and exact asymptotics of small deviations for a~multi-dimensional Wiener process %J Izvestiya. Mathematics %D 2013 %P 1224-1259 %V 77 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a5/ %G en %F IM2_2013_77_6_a5
V. R. Fatalov. Ergodic means for large values of~$T$ and exact asymptotics of small deviations for a~multi-dimensional Wiener process. Izvestiya. Mathematics , Tome 77 (2013) no. 6, pp. 1224-1259. http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a5/