Ergodic means for large values of~$T$ and exact asymptotics of small deviations for a~multi-dimensional Wiener process
Izvestiya. Mathematics , Tome 77 (2013) no. 6, pp. 1224-1259.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove results on exact asymptotics as $T\to\infty$ for the means $\mathsf{E}_{a,c}\exp\bigl\{-\int_0^T g(\mathbf{w}(t))\,dt\bigr\}$ and probabilities $\mathsf{P}_{a,c}\bigl\{\frac1T\int_0^Tg(\mathbf{w}(t))\,dt$, where $\mathbf{w}(t)=(w_1(t),\dots,w_n(t))$, $t\geqslant 0$, is an $n$-dimensional Wiener process, $g(x)$ is a positive continuous function (potential) satisfying certain conditions, $d>0$, and $a,c\in\mathbb{R}^n$ are prescribed vectors. The results are obtained by a new method developed in this paper, the Laplace method for the occupation time of a multi-dimensional Wiener process. We consider examples of monomial and radial potentials and prove results on exact asymptotics of small deviations for the probabilities $\mathsf{P}_0\bigl\{\int_0^1\sum_{j=1}^n|w_j(t)|^p\,dt\varepsilon^p\bigr\}$ as $\varepsilon\to 0$ with a fixed $p>0$.
Keywords: large deviations, Markov processes, Laplace method, action functional, occupation time, multi-dimensional Schrödinger operator.
@article{IM2_2013_77_6_a5,
     author = {V. R. Fatalov},
     title = {Ergodic means for large values of~$T$ and exact asymptotics of small deviations for a~multi-dimensional {Wiener} process},
     journal = {Izvestiya. Mathematics },
     pages = {1224--1259},
     publisher = {mathdoc},
     volume = {77},
     number = {6},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a5/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Ergodic means for large values of~$T$ and exact asymptotics of small deviations for a~multi-dimensional Wiener process
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 1224
EP  - 1259
VL  - 77
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a5/
LA  - en
ID  - IM2_2013_77_6_a5
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Ergodic means for large values of~$T$ and exact asymptotics of small deviations for a~multi-dimensional Wiener process
%J Izvestiya. Mathematics 
%D 2013
%P 1224-1259
%V 77
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a5/
%G en
%F IM2_2013_77_6_a5
V. R. Fatalov. Ergodic means for large values of~$T$ and exact asymptotics of small deviations for a~multi-dimensional Wiener process. Izvestiya. Mathematics , Tome 77 (2013) no. 6, pp. 1224-1259. http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a5/

[1] M. D. Donsker, S. R. S. Varadhan, “Asymptotic evaluation of certain Markov process expectations for large time. III”, Comm. Pure Appl. Math., 29:4 (1976), 389–461 | DOI | MR | Zbl

[2] Sh. Kusuoka, Y. Tamura, “Precise estimate for large deviation of Donsker–Varadhan type”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 38:3 (1991), 533–565 | MR | Zbl

[3] V. I. Piterbarg, V. R. Fatalov, “The Laplace method for probability measures in Banach spaces”, Russian Math. Surveys, 50:6 (1995), 1151–1239 | DOI | MR | Zbl

[4] V. R. Fatalov, “The Laplace method for small deviations of Gaussian processes of Wiener type”, Sb. Math., 196:4 (2005), 595–620 | DOI | DOI | MR | Zbl

[5] V. R. Fatalov, “Occupation times and exact asymptotics of small deviations of Bessel processes for $L^p$-norms with $p>0$”, Izv. Math., 71:4 (2007), 721–752 | DOI | DOI | MR | Zbl

[6] V. R. Fatalov, “Occupation time and exact asymptotics of distributions of $L^p$-functionals of the Ornstein–Uhlenbeck processes, $p>0$”, Probl. Inf. Transm., 53:1 (2009), 13–36 | DOI | DOI | MR | Zbl

[7] S. Albeverio, V. Fatalov, V. Piterbarg, “Asymptotic behavior of the sample mean of a function of the Wiener process and the MacDonald function”, J. Math. Sci. Univ. Tokyo, 16:1 (2009), 55–93 | MR | Zbl

[8] V. R. Fatalov, “Exact asymptotics of Laplace-type Wiener integrals for $L^p$-functionals”, Izv. Math., 74:1 (2010), 189–216 | DOI | DOI | MR | Zbl

[9] V. R. Fatalov, “Large deviations for distributions of sums of random variables: Markov chain method”, Probl. Inf. Transm., 46:2 (2010), 160–183 | DOI | MR | Zbl

[10] V. R. Fatalov, “Exact asymptotics of probabilities of large deviations for Markov chains: the Laplace method”, Izv. Math., 75:4 (2011), 837–868 | DOI | DOI | MR | Zbl

[11] L. M. Wu, “Uniformly integrable operators and large deviations for Markov processes”, J. Funct. Anal., 172:2 (2000), 301–376 | DOI | MR | Zbl

[12] N. Jain, N. Krylov, “Large deviations for occupation times of Markov processes, with $L_2$ semigroups,”, Ann. Prob., 36:5 (2008), 1611–1641 | DOI | MR | Zbl

[13] J. R. Baxter, N. C. Jain, S. R. S. Varadhan, “Some familiar examples for which the large deviation principle does not hold”, Comm. Pure Appl. Math., 44:8–9 (1991), 911–923 | DOI | MR | Zbl

[14] S. R. S. Varadhan, “Large deviations”, Ann. Probab., 36:2 (2008), 397–419 | DOI | MR | Zbl

[15] A. D. Venttsel, Predelnye teoremy o bolshikh ukloneniyakh dlya markovskikh sluchainykh protsessov, Nauka, M., 1986 | MR | Zbl

[16] M. I. Freidlin, A. D. Wentzell, Random perturbations of dynamical systems, Grundlehren Math. Wiss., 260, Springer-Verlag, New York–Berlin, 1984 | MR | MR | Zbl | Zbl

[17] E. Bolthausen, J.-D. Deuschel, Y. Tamura, “Laplace approximations for large deviations of nonreversible Markov processes. The nondegenerate case”, Ann. Probab., 23:1 (1995), 236–267 | DOI | MR | Zbl

[18] S. Liang, J. Liu, “On the precise Laplace approximation for large deviations of Markov chain. The nondegenerate case”, J. Math. Sci. Univ. Tokyo, 10:2 (2003), 421–454 | MR | Zbl

[19] S. Liang, “Laplace approximations for large deviations of diffusion processes on Euclidean spaces”, J. Math. Soc. Japan, 57:2 (2005), 557–592 | DOI | MR | Zbl

[20] A. A. Pukhalskii, Bolshie ukloneniya stokhasticheskikh dinamicheskikh sistem. Teoriya i prilozheniya, Fizmatlit, M., 2005

[21] B. Simon, Functional integration and quantum physics, Pure Appl. Math., 86, Academic Press, New York–London, 1979 | MR | Zbl

[22] J. Feng, T. G. Kurtz, Large deviations for stochastic processes, Math. Surveys Monogr., 131, Amer. Math. Soc., Providence, RI, 2006 | MR | Zbl

[23] N. Ikeda, Sh. Watanabe, Stochastic differential equations and diffusion processes, North-Holland Math. Library, 24, North-Holland, Amsterdam–Oxford–New York, 1981 | MR | Zbl | Zbl

[24] D. Revuz, M. Yor, Continuous martingales and Brownian motion, Grundlehren Math. Wiss., 293, Springer-Verlag, Berlin, 1999 | MR | Zbl

[25] M. Kats, Neskolko veroyatnostnykh zadach fiziki i matematiki, Nauka, M., 1967

[26] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, t. 2: Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1977 ; т. 4: Анализ операторов, 1978 ; M. Reed, B. Simon, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press, New York–London, 1972 ; IV. Analysis of operators, 1978 | MR | MR | Zbl | MR | Zbl | MR | Zbl

[27] G. V. Rozenblum, M. A. Shubin, M. Z. Solomyak, “Spectral theory of differential operators”, Partial differential equations VII, Encycl. Math. Sci., 64, 1994, 1–261 | MR | Zbl | Zbl

[28] G. F. Votruba, L. F. Boron (eds.), Functional analysis, Wolters-Noordhoff Publ., Groningen, 1972 | MR | MR | Zbl

[29] A. D. Polyanin, Spravochnik po lineinym uravneniyam matematicheskoi fiziki, Fizmatlit, M., 2001 | Zbl

[30] F. W. J. Olver, Asymptotics and special functions, Academic Press, New York–London, 1974 | MR | MR | Zbl | Zbl

[31] V. R. Fatalov, “Small deviations for two classes of Gaussian stationary processes and $L^p$-functionals, $0

\le\infty$”, Problems Inform. Transmission, 46:1 (2010), 62–85 | DOI | MR | Zbl

[32] M. A. Lifshits, Gaussian random functions, Math. Appl., 322, Kluwer Acad. Publ., Dordrecht, 1995 | MR | Zbl | Zbl

[33] M. Lifshits, T. Simon, “Small deviations for fractional stable processes”, Ann. Inst. H. Poincaré Probab. Statist, 41:4 (2005), 725–752 | DOI | MR | Zbl

[34] W. V. Li, Q.-M. Shao, “Gaussian processes: Inequalities, small ball probabilities and applications”, Stochastic processes: Theory and methods, Handbook of Statist., 19, North-Holland, Amsterdam, 2001, 533–597 | MR | Zbl

[35] V. R. Fatalov, “Constants in the asymptotics of small deviation probabilities for Gaussian processes and fields”, Russian Math. Surveys, 58:4 (2003), 725–772 | DOI | MR | Zbl

[36] V. R. Fatalov, “Exact asymptotics of small deviations for a stationary Ornstein–Uhlenbeck process and some Gaussian diffusion processes in the $L^p$-norm, $2\le p\le\infty$”, Problems Inform. Transmission, 44:2 (2008), 138–155 | DOI | MR

[37] A. I. Nazarov, Ya. Yu. Nikitin, “Exact $L_2$-small ball behavior of integrated Gaussian processes and spectral asymptotics of boundary value problems value problems”, Probab. Theory Related Fields, 129:4 (2004), 469–494 | DOI | MR | Zbl

[38] Ya. Yu. Nikitin, E. Orsingher, “Exact small deviation asymptotics for the Slepian and Watson processes in the Hilbert norm”, J. Math. Sci. (N. Y.), 137:1 (2006), 4555–4560 | DOI | MR | Zbl

[39] Handbook of mathematical functions with formulas, graphs, and mathematical tables, eds. M. Abramowitz, I. A. Stegun, U.S. Government Printing Office, Washington, 1964 | MR | MR | Zbl | Zbl

[40] L. Takács, “On the distribution of the integral of the absolute value of the Brownian motion”, Ann. Appl. Probab., 3:1 (1993), 186–197 | DOI | MR | Zbl

[41] A. N. Borodin, P. Salminen, Handbook of Brownian motion – facts and formulae, Probab. Appl., Birkhäuser, Basel, 1996 | MR | Zbl

[42] A. N. Borodin, I. A. Ibragimov, Limit theorems for functionals of random walks, Proc. Steklov Inst. Math., Amer. Math. Soc., Providence, RI, 1995 | MR | Zbl | Zbl

[43] B. Øksendal, Stochastic differential equations, Universitext, Springer-Verlag, Berlin, 2003 | MR | Zbl

[44] S. Mizohata, The theory of partial differential equations, Cambridge Univ. Press, London, 1973 | MR | Zbl

[45] M. Fukushima, M. Takeda, “A transformation of a symmetric Markov process and the Donsker–Varadhan theory”, Osaka J. Math., 21:2 (1984), 311–326 | MR | Zbl

[46] M. Fukushima, Y. Oshima, M. Takeda, Dirichlet forms and symmetric Markov processes, de Gruyter, 19, Springer-Verlag, Berlin, 1994 | MR | Zbl

[47] S. Albeverio, R. Hoegh-Krohn, “Dirichlet forms and diffusion processes on rigged Hilbert spaces”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 40:1 (1977), 1–57 | DOI | MR | Zbl

[48] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimal control, Contemp. Soviet Math., Consultants Bureau, New York, 1987 | MR | MR | Zbl | Zbl

[49] M. M. Vainberg, Variational method and method of monotone operators in the theory of nonlinear equations, Halsted Press, New York–Toronto, 1973 | MR | MR | Zbl | Zbl

[50] V. R. Fatalov, “The Laplace method for computing exact asymptotics of distributions of integral statistics”, Math. Methods Statist., 8:4 (1999), 510–535 | MR | Zbl

[51] J. Kerstan, K. Matthes, J. Mecke, Unbegrenzt teilbare Punktprozesse, Akademie-Verlag, Berlin, 1974 | MR | MR | Zbl | Zbl

[52] H. Cramer, M. R. Leadbetter, Stationary and related stochastic processes. Sample function properties and their applications, Wiley, New York–London–Sydney, 1967 | MR | Zbl | Zbl

[53] L. Beghin, Ya. Yu. Nikulin, E. Orsinger, “Exact small ball constants for some Gaussian processes under the $L_2$-norm”, J. Math. Sci. (N. Y.), 128:1 (2005), 2493–2502 | DOI | MR | Zbl

[54] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR | Zbl