A Littlewood--Paley type theorem and a~corollary
Izvestiya. Mathematics , Tome 77 (2013) no. 6, pp. 1155-1194.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an analogue of the Littlewood–Paley theorem for orthoprojectors onto mutually orthogonal subspaces of piecewise-polynomial functions on the cube $I^d$. This yields upper bounds for the norms of functions in $L_p(I^d)$ in terms of the corresponding norms of the projections to subspaces of piecewise-polynomial functions of several variables. We use these results to obtain upper bounds for the Kolmogorov widths of Besov classes of (non-periodic) functions satisfying mixed Hölder conditions.
Keywords: orthoprojector, mutually orthogonal subspaces, piecewise-polynomial functions, Littlewood–Paley theorem, width.
@article{IM2_2013_77_6_a3,
     author = {S. N. Kudryavtsev},
     title = {A {Littlewood--Paley} type theorem and a~corollary},
     journal = {Izvestiya. Mathematics },
     pages = {1155--1194},
     publisher = {mathdoc},
     volume = {77},
     number = {6},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a3/}
}
TY  - JOUR
AU  - S. N. Kudryavtsev
TI  - A Littlewood--Paley type theorem and a~corollary
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 1155
EP  - 1194
VL  - 77
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a3/
LA  - en
ID  - IM2_2013_77_6_a3
ER  - 
%0 Journal Article
%A S. N. Kudryavtsev
%T A Littlewood--Paley type theorem and a~corollary
%J Izvestiya. Mathematics 
%D 2013
%P 1155-1194
%V 77
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a3/
%G en
%F IM2_2013_77_6_a3
S. N. Kudryavtsev. A Littlewood--Paley type theorem and a~corollary. Izvestiya. Mathematics , Tome 77 (2013) no. 6, pp. 1155-1194. http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a3/

[1] V. N. Temlyakov, “Approximation of functions with a bounded mixed derivative”, Proc. Steklov Inst. Math., 178 (1989), 1–121 | MR | Zbl | Zbl

[2] É. M. Galeev, “Widths of the Besov classes $B_{p,\theta}^r(\mathbb T^d)$”, Math. Notes, 69:5 (2001), 605–613 | DOI | DOI | MR | Zbl

[3] S. M. Nikolśkiǐ, Approximation of functions of several variables and imbedding theorems, Springer-Verlag, New York–Heidelberg, 1975 | MR | MR | Zbl | Zbl

[4] O. V. Besov, “The Littlewood–Paley theorem for a mixed norm”, Proc. Steklov Inst. Math., 170 (1987), 33–38 | MR | Zbl | Zbl

[5] S. N. Kudryavtsev, “Obobschennye ryady Khaara i ikh primenenie”, Anal. Math., 37:2 (2011), 103–150 | DOI | MR | Zbl

[6] S. N. Kudryavtsev, Teorema tipa Littlvuda–Peli dlya ortoproektorov na vzaimno ortogonalnye podprostranstva kusochno polinomialnykh funktsii i sledstvie iz nee, arXiv: http://arxiv.org/abs/1111.5968

[7] Eh. M. Galeev, “Order estimates of derivatives of the multidimensional periodic Dirichlet $\alpha$-kernel in a mixed norm”, Math. USSR-Sb., 45:1 (1983), 31–43 | DOI | MR | Zbl | Zbl

[8] S. N. Kudryavtsev, “Approximation of the derivatives of finitely smooth functions belonging to non-isotropic classes”, Izv. Math., 68:1 (2004), 77–123 | DOI | DOI | MR | Zbl

[9] S. N. Kudryavtsev, “Approximation and reconstruction of the derivatives of functions satisfying mixed Hölder conditions”, Izv. Math., 71:5 (2007), 895–938 | DOI | DOI | MR | Zbl

[10] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970 | MR | MR | Zbl | Zbl

[11] S. M. Nikolskii, “Funktsii s dominiruyuschei smaeshannoi proizvodnoi, udovletvoryayuschei kratnomu usloviyu Geldera”, Sib. matem. zhurn., 4:6 (1963), 1342–1364 | MR | Zbl

[12] T. I. Amanov, Prostranstva differentsiruemykh funktsii s dominiruyuschei smeshannoi proizvodnoi, Nauka KazSSR, Alma-Ata, 1976 | MR

[13] V. M. Tikhomirov, Nekotorye voprosy teorii priblizheniya, Izd-vo Mosk. un-ta, M., 1976 | MR | Zbl

[14] B. S. Kašin, “Diameters of some finite-dimensional sets and classes of smooth functions”, Math. USSR-Izv., 11:2 (1977), 317–333 | DOI | MR | Zbl | Zbl