Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2013_77_6_a3, author = {S. N. Kudryavtsev}, title = {A {Littlewood--Paley} type theorem and a~corollary}, journal = {Izvestiya. Mathematics }, pages = {1155--1194}, publisher = {mathdoc}, volume = {77}, number = {6}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a3/} }
S. N. Kudryavtsev. A Littlewood--Paley type theorem and a~corollary. Izvestiya. Mathematics , Tome 77 (2013) no. 6, pp. 1155-1194. http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a3/
[1] V. N. Temlyakov, “Approximation of functions with a bounded mixed derivative”, Proc. Steklov Inst. Math., 178 (1989), 1–121 | MR | Zbl | Zbl
[2] É. M. Galeev, “Widths of the Besov classes $B_{p,\theta}^r(\mathbb T^d)$”, Math. Notes, 69:5 (2001), 605–613 | DOI | DOI | MR | Zbl
[3] S. M. Nikolśkiǐ, Approximation of functions of several variables and imbedding theorems, Springer-Verlag, New York–Heidelberg, 1975 | MR | MR | Zbl | Zbl
[4] O. V. Besov, “The Littlewood–Paley theorem for a mixed norm”, Proc. Steklov Inst. Math., 170 (1987), 33–38 | MR | Zbl | Zbl
[5] S. N. Kudryavtsev, “Obobschennye ryady Khaara i ikh primenenie”, Anal. Math., 37:2 (2011), 103–150 | DOI | MR | Zbl
[6] S. N. Kudryavtsev, Teorema tipa Littlvuda–Peli dlya ortoproektorov na vzaimno ortogonalnye podprostranstva kusochno polinomialnykh funktsii i sledstvie iz nee, arXiv: http://arxiv.org/abs/1111.5968
[7] Eh. M. Galeev, “Order estimates of derivatives of the multidimensional periodic Dirichlet $\alpha$-kernel in a mixed norm”, Math. USSR-Sb., 45:1 (1983), 31–43 | DOI | MR | Zbl | Zbl
[8] S. N. Kudryavtsev, “Approximation of the derivatives of finitely smooth functions belonging to non-isotropic classes”, Izv. Math., 68:1 (2004), 77–123 | DOI | DOI | MR | Zbl
[9] S. N. Kudryavtsev, “Approximation and reconstruction of the derivatives of functions satisfying mixed Hölder conditions”, Izv. Math., 71:5 (2007), 895–938 | DOI | DOI | MR | Zbl
[10] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970 | MR | MR | Zbl | Zbl
[11] S. M. Nikolskii, “Funktsii s dominiruyuschei smaeshannoi proizvodnoi, udovletvoryayuschei kratnomu usloviyu Geldera”, Sib. matem. zhurn., 4:6 (1963), 1342–1364 | MR | Zbl
[12] T. I. Amanov, Prostranstva differentsiruemykh funktsii s dominiruyuschei smeshannoi proizvodnoi, Nauka KazSSR, Alma-Ata, 1976 | MR
[13] V. M. Tikhomirov, Nekotorye voprosy teorii priblizheniya, Izd-vo Mosk. un-ta, M., 1976 | MR | Zbl
[14] B. S. Kašin, “Diameters of some finite-dimensional sets and classes of smooth functions”, Math. USSR-Izv., 11:2 (1977), 317–333 | DOI | MR | Zbl | Zbl