A Littlewood--Paley type theorem and a~corollary
Izvestiya. Mathematics , Tome 77 (2013) no. 6, pp. 1155-1194

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an analogue of the Littlewood–Paley theorem for orthoprojectors onto mutually orthogonal subspaces of piecewise-polynomial functions on the cube $I^d$. This yields upper bounds for the norms of functions in $L_p(I^d)$ in terms of the corresponding norms of the projections to subspaces of piecewise-polynomial functions of several variables. We use these results to obtain upper bounds for the Kolmogorov widths of Besov classes of (non-periodic) functions satisfying mixed Hölder conditions.
Keywords: orthoprojector, mutually orthogonal subspaces, piecewise-polynomial functions, Littlewood–Paley theorem, width.
@article{IM2_2013_77_6_a3,
     author = {S. N. Kudryavtsev},
     title = {A {Littlewood--Paley} type theorem and a~corollary},
     journal = {Izvestiya. Mathematics },
     pages = {1155--1194},
     publisher = {mathdoc},
     volume = {77},
     number = {6},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a3/}
}
TY  - JOUR
AU  - S. N. Kudryavtsev
TI  - A Littlewood--Paley type theorem and a~corollary
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 1155
EP  - 1194
VL  - 77
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a3/
LA  - en
ID  - IM2_2013_77_6_a3
ER  - 
%0 Journal Article
%A S. N. Kudryavtsev
%T A Littlewood--Paley type theorem and a~corollary
%J Izvestiya. Mathematics 
%D 2013
%P 1155-1194
%V 77
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a3/
%G en
%F IM2_2013_77_6_a3
S. N. Kudryavtsev. A Littlewood--Paley type theorem and a~corollary. Izvestiya. Mathematics , Tome 77 (2013) no. 6, pp. 1155-1194. http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a3/