Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2013_77_6_a2, author = {O. V. Kamlovskii}, title = {Frequency characteristics of coordinate sequences of linear recurrences over {Galois} rings}, journal = {Izvestiya. Mathematics }, pages = {1130--1154}, publisher = {mathdoc}, volume = {77}, number = {6}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a2/} }
TY - JOUR AU - O. V. Kamlovskii TI - Frequency characteristics of coordinate sequences of linear recurrences over Galois rings JO - Izvestiya. Mathematics PY - 2013 SP - 1130 EP - 1154 VL - 77 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a2/ LA - en ID - IM2_2013_77_6_a2 ER -
O. V. Kamlovskii. Frequency characteristics of coordinate sequences of linear recurrences over Galois rings. Izvestiya. Mathematics , Tome 77 (2013) no. 6, pp. 1130-1154. http://geodesic.mathdoc.fr/item/IM2_2013_77_6_a2/
[1] A. A. Nechaev, “Kerdock code in a cyclic form”, Discrete Math. Appl., 1:4 (1991), 365–384 | MR | Zbl | Zbl
[2] B. R. McDonald, Finite rings with identity, Dekker, New York, 1974 | MR | Zbl
[3] A. S. Kuzmin, A. A. Nechaev, “Linear recurring sequences over Galois rings”, Algebra and Logic, 34:2 (1995), 87–100 | DOI | MR | Zbl
[4] A. S. Kuzmin, V. L. Kurakin, A. A. Nechaev, “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, v. 1, TVP, M., 1997, 139–202 | MR | Zbl
[5] V. L. Kurakin, A. S. Kuzmin, A. V. Mikhalev, A. A. Nechaev, “Linear recurring sequences over rings and modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl
[6] A. S. Kuzmin, G. B. Marshalko, A. A. Nechaev, “Vosstanovlenie lineinoi rekurrenty nad primarnym koltsom vychetov po ee uslozhneniyu”, Matem. vopr. kriptogr., 1:2 (2010), 31–56
[7] V. L. Kurakin, “The first coordinate sequence of a linear recurrence of maximal period over a Galois ring”, Discrete Math. Appl., 4:2 (1994), 129–141 | MR | Zbl
[8] D. N. Bylkov, “A class of injective compressing maps on linear recurring sequences over a Galois ring”, Problems Inform. Transmission, 46:3 (2010), 245–252 | DOI | MR | Zbl
[9] O. V. Kamlovskii, “Metod trigonometricheskikh summ dlya issledovaniya chastot $r$-gramm v starshikh koordinatnykh posledovatelnostyakh lineinykh rekurrent nad koltsom $\mathbb{Z}_{2^n}$”, Matem. vopr. kriptogr., 1:4 (2010), 33–62
[10] L. Lathtonen, S. Ling, P. Solé, D. Zinoviev, “$\mathbb{Z}_8$-Kerdock codes and pseudorandom binary sequences”, J. Complexity, 20:2–3 (2004), 318–330 | DOI | MR | Zbl
[11] P. Solé, D. Zinoviev, “The most significant bit of maximum-length sequences over $\mathbb Z_{2^l}$: autocorrelation and imbalance”, IEEE Trans. Inform. Theory, 50:8 (2004), 1844–1846 | DOI | MR
[12] P. Solé, D. Zinoviev, “Distribution of $r$-patterns in the most significant bit of a maximum length sequence over $\mathbb Z_{2^l}$”, Sequences and their applications – SETA 2004 (Seoul, Korea, 2004), Lecture Notes in Comput. Sci., 3486, Springer-Verlag, Berlin, 2005, 275–281 | DOI | Zbl
[13] P. Solé, D. Zinoviev, “Galois rings and pseudo-random sequences”, Cryptography and coding, Lecture Notes in Comput. Sci., 4887, Springer-Verlag, Berlin, 2007, 16–33 | DOI | MR | Zbl
[14] S. Fan, W. Han, “Random properties of the highest level sequences of primitive sequences over $\mathbb Z_{2^e}$”, IEEE Trans. Inform. Theory, 49:6 (2003), 1553–1557 | DOI | MR | Zbl
[15] Z.-D. Dai, D. Ye, P. Wang, G. Fang, “Distribution of $R$-patterns in the highest level of $p$-adic expansion of some linear recursion sequences over Galois rings”, Mathematical properties of sequences and other combinatorial structures (Los Angeles, CA, USA, 2002), Kluwer Acad. Publ., Dordrecht, 2003, 77–83 | MR | Zbl
[16] H. Hu, D. Feng, W. Wu, “Incomplete exponential sums over galois rings with applications to some binary sequences derived from $\mathbb Z_{2^l}$”, IEEE Trans. Inform. Theory, 52:5 (2006), 2260–2265 | DOI | MR
[17] W. Qi, J. Zhou, “Distribution of 0 and 1 in the highest level of primitive sequences over $\mathbb Z_{2^e}$”, Sci. China Ser. A, 40:6 (1997), 606–611 | DOI | MR | Zbl
[18] Q. X. Zheng, W. F. Qi, “Distribution properties of compressing sequences derived from primitive sequences over $\mathbb{Z}_{p^e}$”, IEEE Trans. Inform. Theory, 56:1 (2010), 555–563 | DOI | MR
[19] O. V. Kamlovskii, “Frequency characteristics of linear recurrence sequences over Galois rings”, Sb. Math., 200:4 (2009), 499–519 | DOI | DOI | MR | Zbl
[20] N. M. Korobov, “Raspredelenie nevychetov i pervoobraznykh kornei v rekurrentnykh ryadakh”, Dokl. AN SSSR, 88:4 (1953), 603–606 | MR | Zbl
[21] N. M. Korobov, Trigonometricheskie summy i ikh prilozheniya, Nauka, M., 1989 | MR | Zbl
[22] A. S. Kuz'min, “The distribution of elements on cycles of linear recurrents over rings of residues”, Russian Math. Surveys, 47:6 (1992), 219–221 | DOI | MR | Zbl
[23] A. A. Nechaev, “Cycle types of linear substitutions over finite commutative rings”, Russian Acad. Sci. Sb. Math., 78:2 (1994), 283–311 | DOI | MR | Zbl
[24] M. M. Glukhov, V. P. Elizarov, A. A. Nechaev, Algebra: uchebnik, v. 2, Gelios ARV, M., 2003
[25] T. Cochran, “On a trigonometric inequality of Vinogradov”, J. Number Theory, 27:1 (1987), 9–16 | DOI | MR | Zbl
[26] V. I. Solodovnikov, “Bent functions from a finite abelian group into a finite abelian group”, Discrete Math. Appl., 12:2 (2002), 111–126 | DOI | MR | Zbl
[27] G. M. Fikhtengol'ts, Differential- und Integralrechnung, v. II, VEB, Berlin, 1986 | MR | Zbl | Zbl