Hua measures on the space of $p$-adic matrices and inverse limits of Grassmannians
Izvestiya. Mathematics , Tome 77 (2013) no. 5, pp. 941-953.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct $p$-adic analogues of Hua measures on inverse limits of $p$-adic Grassmannians and describe natural groups of symmetries of such measures.
Keywords: Grassmannians, $p$-adic numbers, quasi-invariant measures.
@article{IM2_2013_77_5_a2,
     author = {Yu. A. Neretin},
     title = {Hua measures on the space of $p$-adic matrices and inverse limits of {Grassmannians}},
     journal = {Izvestiya. Mathematics },
     pages = {941--953},
     publisher = {mathdoc},
     volume = {77},
     number = {5},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a2/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - Hua measures on the space of $p$-adic matrices and inverse limits of Grassmannians
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 941
EP  - 953
VL  - 77
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a2/
LA  - en
ID  - IM2_2013_77_5_a2
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T Hua measures on the space of $p$-adic matrices and inverse limits of Grassmannians
%J Izvestiya. Mathematics 
%D 2013
%P 941-953
%V 77
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a2/
%G en
%F IM2_2013_77_5_a2
Yu. A. Neretin. Hua measures on the space of $p$-adic matrices and inverse limits of Grassmannians. Izvestiya. Mathematics , Tome 77 (2013) no. 5, pp. 941-953. http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a2/

[1] Yu. A. Neretin, “Hua-type integrals over unitary groups and over projective limits of unitary groups”, Duke Math. J., 114:2 (2002), 239–266 | DOI | MR | Zbl

[2] Yu. A. Neretin, Lectures on Gaussian integral operators and classical groups, EMS Ser. Lect. Math., European Math. Soc., Zürich, 2011 | MR | Zbl

[3] L. K. Hua, Harmonic analysis of functions of several complex variables in the classical domains, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1963 | MR | MR | Zbl | Zbl

[4] G. Olshanski, “The problem of harmonic analysis on the infinite-dimensional unitary group”, J. Funct. Anal., 205:2 (2003), 464–524 | DOI | MR | Zbl

[5] A. Borodin, G. Olshanski, “Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes”, Ann. of Math. (2), 161:3 (2005), 1319–1422 | DOI | MR | Zbl

[6] D. Pickrell, “Measures on infinite dimensional Grassmann manifolds”, J. Funct. Anal., 70:2 (1987), 323–356 | DOI | MR | Zbl

[7] S. Kerov, G. Olshanski, A. Vershik, “Harmonic analysis on the infinite symmetric group”, Invent. Math., 158:3 (2004), 551–642 | DOI | MR | Zbl

[8] A. N. Shiryaev, Probability, Grad. Texts in Math., 95, Springer-Verlag, New York, 1996 | MR | MR | Zbl | Zbl

[9] Yu. A. Neretin, “Beta functions of Bruhat-Tits buildings and deformation of $l^2$ on the set of $p$-adic lattices”, Sb. Math., 194:12 (2003), 1775–1805 | DOI | DOI | MR | Zbl

[10] B. Ørsted, “A model for an interacting quantum field”, J. Funct. Anal., 36:1 (1980), 53–71 | DOI | MR | Zbl

[11] Yu. A. Neretin, Categories of symmetries and infinite-dimensional groups, London Math. Soc. Monogr. (N.S.), 16, Clarendon Press, Oxford, 1996 | MR | Zbl

[12] A. M. Vershik, S. V. Kerov, “Characters and factor representations of the infinite symmetric group.”, Soviet Math. Dokl., 23:2 (1981), 389–392 | MR | Zbl

[13] A. M. Vershik, S. V. Kerov, “Asymptotic theory of characters of the symmetric group”, Functional Anal. Appl., 15:4 (1981), 246–255 | DOI | MR | Zbl

[14] G. I. Ol'shanskij, “Unitary representations of $(G,K)$-pairs connected with the infinite symmetric group $S(\infty)$”, Leningrad Math. J., 1:4 (1990), 983–1014 | MR | Zbl

[15] G. I. Ol'shanskij, “Unitary representations of infinite-dimensional pairs $(G,K)$ and the formalism of R. Howe”, Soviet Math. Dokl., 27:2 (1982), 290–294 | MR | Zbl

[16] G. I. Olshanski, “Unitary representations of infinite-dimensional pairs $(G,K)$ and the formalism of R. Howe”, Representation of Lie groups and related topics, Adv. Stud. Contemp. Math., 7, Gordon and Breach, New York, 1990, 269–463 | MR | Zbl

[17] D. Pickrell, “Separable representations for automorphism groups of infinite symmetric spaces”, J. Funct. Anal., 90:1 (1990), 1–26 | DOI | MR | Zbl

[18] G. I. Olshanski, “On semigroups related to infinite-dimensional groups”, Topics in representation theory, Adv. Soviet Math., 2, Amer. Math. Soc., Providence, R.I., 1991, 67–101 | MR | Zbl

[19] Yu. A. Neretin, Infinite-dimensional $p$-adic groups, semigroups of double cosets, and inner functions on Bruhat–Tits builldings, arXiv: 1108.4873

[20] E. I. Zelenov, “The infinitedimensional $p$-adic symplectic group”, Russian Acad. Sci. Izv. Math., 43:3 (1994), 421–441 | DOI | MR | Zbl

[21] M. Nazarov, Yu. Neretin, G. Olshanskii, “Semi-groupes engendres par la representation de Weil du groupe symplectique de dimension infinie”, C. R. Acad. Sci. Paris Sér. I. Math., 309:7 (1989), 443–446 | MR | Zbl

[22] M. Nazarov, “Oscillator semigroup over a non-Archimedean field”, J. Funct. Anal., 128:2 (1995), 384–438 | DOI | MR | Zbl

[23] A. M. Vershik, S. V. Kerov, “Four drafts on the representation theory of the group of infinite matrices over a finite field”, J. Math. Sci. (N. Y.), 147:6 (2007), 7129–7144 | DOI | MR

[24] A. V. Dudko, “Tame representations of the group $\mathrm{GL}(\infty,\mathbb F_q)$”, St. Petersburg Math. J., 18:2 (2007), 223–239 | DOI | MR | Zbl

[25] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Math. Monogr., Clarendon Press, New York, 1996 | MR | Zbl