Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2013_77_5_a0, author = {D. B. Kaledin}, title = {Cyclotomic complexes}, journal = {Izvestiya. Mathematics }, pages = {855--916}, publisher = {mathdoc}, volume = {77}, number = {5}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a0/} }
D. B. Kaledin. Cyclotomic complexes. Izvestiya. Mathematics , Tome 77 (2013) no. 5, pp. 855-916. http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a0/
[1] D. Kaledin, “Derived Mackey functors”, Mosc. Math. J., 11:4 (2011), 723–803 | MR | Zbl
[2] D. Kaledin, “Non-commutative Hodge-to-de Rham degeneration via the method of Deligne–Illusie”, Pure Appl. Math. Q., 4:3 (2008), 785–875 | MR | Zbl
[3] M. Bökstedt, W. C. Hsiang, I. Madsen, “The cyclotomic trace and algebraic $K$-theory of spaces”, Invent. Math., 111:1 (1993), 465–539 | DOI | MR | Zbl
[4] L. G. Lewis, J. P. May, M. Steinberger, Equivariant stable homotopy theor, Lecture Notes in Math., 1213, Springer-Verlag, Berlin, 1986 | DOI | MR | Zbl
[5] M. Bökstedt, I. Madsen, “Topological cyclic homology of the integers”, $K$-theory (Strasbourg, 1992), Astérisque, 226, Soc. Math. de France, Paris, 1994, 57–143 | MR | Zbl
[6] L. Hesselholt, I. Madsen, “On the $K$-theory of finite algebras over Witt vectors of perfect fields”, Topology, 36:1 (1997), 29–101 | DOI | MR | Zbl
[7] J.-M. Fontaine, G. Lafaille, “Construction de représentations $p$-adiques”, Ann. Sci. École Norm. Sup. (4), 15:4 (1982), 547–608 | MR | Zbl
[8] D. Kaledin, “Motivic structures in non-commutative geometry”, Proceedings of the International Congress of Mathematicians, v. II, Hindustani Book Agency, New Delhi, 2010, 461–496 | MR | Zbl
[9] J.-M. Fontaine, W. Messing, “$p$-adic periods and $p$-adic étale cohomology”, Current trends in arithmetical algebraic geometry (Arcata, CA, 1985), Contemp. Math., 67, Amer. Math. Soc., Providence, RI, 1987, 179–207 | DOI | MR | Zbl
[10] J.-L. Loday, Cyclic homology, Grundlehren Math. Wiss., 301, Springer-Verlag, Berlin, 1998 | MR | Zbl
[11] B. Feǐgin, B. L. Tsygan, “Additive $K$-theory”, $K$-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math., 1289, Springer-Verlag, Berlin, 1987, 67–209 | DOI | MR | Zbl
[12] T. G. Goodwillie, “Relative algebraic $K$-theory and cyclic homology”, Ann. of Math. (2), 124:2 (1986), 347–402 | DOI | MR | Zbl
[13] V. Drinfeld, “On the notion of geometric realization”, Mosc. Math. J., 4:3 (2004), 619–626 | MR | Zbl
[14] A. Grothendieck, “Exposé VI: Catégories fibré et descente”, SGA I: Revétements étales et groupe fondamental, Lect. Notes in Math., 224, Springer, Berlin, 145–194
[15] A. K. Bousfield, “Constructions of factorization systems in categories”, J. Pure Appl. Algebra, 9:2–3 (1976–77), 207–220 | DOI | MR | Zbl