Cyclotomic complexes
Izvestiya. Mathematics , Tome 77 (2013) no. 5, pp. 855-916

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a triangulated category of cyclotomic complexes (homological analogues of the cyclotomic spectra of Bökstedt and Madsen) along with a version of the topological cyclic homology functor TC for cyclotomic complexes and an equivariant homology functor (commuting with TC) from cyclotomic spectra to cyclotomic complexes. We also prove that the category of cyclotomic complexes essentially coincides with the twisted 2-periodic derived category of the category of filtered Dieudonné modules, which were introduced by Fontaine and Lafaille. Under certain conditions we show that the functor TC on cyclotomic complexes is the syntomic cohomology functor.
Keywords: cyclotomic spectrum, filtered Dieudonné module.
Mots-clés : cyclotomic complex
@article{IM2_2013_77_5_a0,
     author = {D. B. Kaledin},
     title = {Cyclotomic complexes},
     journal = {Izvestiya. Mathematics },
     pages = {855--916},
     publisher = {mathdoc},
     volume = {77},
     number = {5},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a0/}
}
TY  - JOUR
AU  - D. B. Kaledin
TI  - Cyclotomic complexes
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 855
EP  - 916
VL  - 77
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a0/
LA  - en
ID  - IM2_2013_77_5_a0
ER  - 
%0 Journal Article
%A D. B. Kaledin
%T Cyclotomic complexes
%J Izvestiya. Mathematics 
%D 2013
%P 855-916
%V 77
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a0/
%G en
%F IM2_2013_77_5_a0
D. B. Kaledin. Cyclotomic complexes. Izvestiya. Mathematics , Tome 77 (2013) no. 5, pp. 855-916. http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a0/