Cyclotomic complexes
Izvestiya. Mathematics , Tome 77 (2013) no. 5, pp. 855-916.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a triangulated category of cyclotomic complexes (homological analogues of the cyclotomic spectra of Bökstedt and Madsen) along with a version of the topological cyclic homology functor TC for cyclotomic complexes and an equivariant homology functor (commuting with TC) from cyclotomic spectra to cyclotomic complexes. We also prove that the category of cyclotomic complexes essentially coincides with the twisted 2-periodic derived category of the category of filtered Dieudonné modules, which were introduced by Fontaine and Lafaille. Under certain conditions we show that the functor TC on cyclotomic complexes is the syntomic cohomology functor.
Keywords: cyclotomic spectrum, filtered Dieudonné module.
Mots-clés : cyclotomic complex
@article{IM2_2013_77_5_a0,
     author = {D. B. Kaledin},
     title = {Cyclotomic complexes},
     journal = {Izvestiya. Mathematics },
     pages = {855--916},
     publisher = {mathdoc},
     volume = {77},
     number = {5},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a0/}
}
TY  - JOUR
AU  - D. B. Kaledin
TI  - Cyclotomic complexes
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 855
EP  - 916
VL  - 77
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a0/
LA  - en
ID  - IM2_2013_77_5_a0
ER  - 
%0 Journal Article
%A D. B. Kaledin
%T Cyclotomic complexes
%J Izvestiya. Mathematics 
%D 2013
%P 855-916
%V 77
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a0/
%G en
%F IM2_2013_77_5_a0
D. B. Kaledin. Cyclotomic complexes. Izvestiya. Mathematics , Tome 77 (2013) no. 5, pp. 855-916. http://geodesic.mathdoc.fr/item/IM2_2013_77_5_a0/

[1] D. Kaledin, “Derived Mackey functors”, Mosc. Math. J., 11:4 (2011), 723–803 | MR | Zbl

[2] D. Kaledin, “Non-commutative Hodge-to-de Rham degeneration via the method of Deligne–Illusie”, Pure Appl. Math. Q., 4:3 (2008), 785–875 | MR | Zbl

[3] M. Bökstedt, W. C. Hsiang, I. Madsen, “The cyclotomic trace and algebraic $K$-theory of spaces”, Invent. Math., 111:1 (1993), 465–539 | DOI | MR | Zbl

[4] L. G. Lewis, J. P. May, M. Steinberger, Equivariant stable homotopy theor, Lecture Notes in Math., 1213, Springer-Verlag, Berlin, 1986 | DOI | MR | Zbl

[5] M. Bökstedt, I. Madsen, “Topological cyclic homology of the integers”, $K$-theory (Strasbourg, 1992), Astérisque, 226, Soc. Math. de France, Paris, 1994, 57–143 | MR | Zbl

[6] L. Hesselholt, I. Madsen, “On the $K$-theory of finite algebras over Witt vectors of perfect fields”, Topology, 36:1 (1997), 29–101 | DOI | MR | Zbl

[7] J.-M. Fontaine, G. Lafaille, “Construction de représentations $p$-adiques”, Ann. Sci. École Norm. Sup. (4), 15:4 (1982), 547–608 | MR | Zbl

[8] D. Kaledin, “Motivic structures in non-commutative geometry”, Proceedings of the International Congress of Mathematicians, v. II, Hindustani Book Agency, New Delhi, 2010, 461–496 | MR | Zbl

[9] J.-M. Fontaine, W. Messing, “$p$-adic periods and $p$-adic étale cohomology”, Current trends in arithmetical algebraic geometry (Arcata, CA, 1985), Contemp. Math., 67, Amer. Math. Soc., Providence, RI, 1987, 179–207 | DOI | MR | Zbl

[10] J.-L. Loday, Cyclic homology, Grundlehren Math. Wiss., 301, Springer-Verlag, Berlin, 1998 | MR | Zbl

[11] B. Feǐgin, B. L. Tsygan, “Additive $K$-theory”, $K$-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math., 1289, Springer-Verlag, Berlin, 1987, 67–209 | DOI | MR | Zbl

[12] T. G. Goodwillie, “Relative algebraic $K$-theory and cyclic homology”, Ann. of Math. (2), 124:2 (1986), 347–402 | DOI | MR | Zbl

[13] V. Drinfeld, “On the notion of geometric realization”, Mosc. Math. J., 4:3 (2004), 619–626 | MR | Zbl

[14] A. Grothendieck, “Exposé VI: Catégories fibré et descente”, SGA I: Revétements étales et groupe fondamental, Lect. Notes in Math., 224, Springer, Berlin, 145–194

[15] A. K. Bousfield, “Constructions of factorization systems in categories”, J. Pure Appl. Algebra, 9:2–3 (1976–77), 207–220 | DOI | MR | Zbl