Sporadic simple groups and quotient singularities
Izvestiya. Mathematics , Tome 77 (2013) no. 4, pp. 846-854.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that if a faithful irreducible representation of a central extension of a sporadic simple group with centre contained in the commutator subgroup gives rise to an exceptional (resp. weakly exceptional but not exceptional) quotient singularity, then that simple group is the Hall–Janko group (resp. the Suzuki group).
Keywords: weakly exceptional singularities, log canonical threshold, sporadic simple groups.
@article{IM2_2013_77_4_a9,
     author = {I. A. Cheltsov and K. A. Shramov},
     title = {Sporadic simple groups and quotient singularities},
     journal = {Izvestiya. Mathematics },
     pages = {846--854},
     publisher = {mathdoc},
     volume = {77},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a9/}
}
TY  - JOUR
AU  - I. A. Cheltsov
AU  - K. A. Shramov
TI  - Sporadic simple groups and quotient singularities
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 846
EP  - 854
VL  - 77
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a9/
LA  - en
ID  - IM2_2013_77_4_a9
ER  - 
%0 Journal Article
%A I. A. Cheltsov
%A K. A. Shramov
%T Sporadic simple groups and quotient singularities
%J Izvestiya. Mathematics 
%D 2013
%P 846-854
%V 77
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a9/
%G en
%F IM2_2013_77_4_a9
I. A. Cheltsov; K. A. Shramov. Sporadic simple groups and quotient singularities. Izvestiya. Mathematics , Tome 77 (2013) no. 4, pp. 846-854. http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a9/

[1] V. Shokurov, “Complements on surfaces”, J. Math. Sci. (New York), 102:2 (2000), 3876–3932 | DOI | MR | Zbl

[2] Yu. G. Prokhorov, “Blow-ups of canonical singularities”, Algebra (Moscow, 1998), de Gruyter, Berlin, 2000, 301–317 | MR | Zbl

[3] I. Cheltsov, C. Shramov, “On exceptional quotient singularities”, Geom. Topol., 15:4 (2011), 1843–1882 | DOI | MR | Zbl

[4] A. R. Iano-Fletcher, “Working with weighted complete intersections”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 101–173 | MR | Zbl

[5] G. Tian, “On Kähler–Einstein metrics on certain Kähler manifolds with $\mathrm{c}_{1}(M)>0$”, Invent. Math., 89:2 (1987), 225–246 | DOI | MR | Zbl

[6] S. A. Kudryavtsev, “Pure log terminal blow-ups”, Math. Notes, 69:6 (2001), 814–819 | DOI | DOI | MR | Zbl

[7] I. Cheltsov, C. Shramov, “Log canonical thresholds of smooth Fano threefolds”, Russian Math. Surveys, 63:5 (2008), 73–180 | DOI | DOI | MR | Zbl

[8] J. G. Thompson, “Invariants of finite groups”, J. Algebra, 69:1 (1981), 143–145 | DOI | MR | Zbl

[9] H. F. Blickfeldt, Finite collineation groups, Univ. of Chicago Press, Chicago, 1917 | Zbl

[10] R. Brauer, “Über endliche lineare Gruppen von Primzahlgrad”, Math. Ann., 169:1 (1967), 73–96 | DOI | MR | Zbl

[11] J. H. Lindsey, II, “Finite linear groups of degree six”, Canad. J. Math., 23 (1971), 771–790 | DOI | MR | Zbl

[12] D. B. Wales, “Finite linear groups of degree seven. I”, Canad. J. Math., 21 (1969), 1042–1056 | DOI | MR | Zbl

[13] D. B. Wales, “Finite linear groups of degree seven. II”, Pacific J. Math., 34 (1970), 207–235 | DOI | MR | Zbl

[14] W. Feit, “The current situation in the theory of finite simple groups”, Actes du Congrès International des Mathématiciens (Nice, 1970), Gauthier-Villars, Paris, 1971, 55–93 | MR | Zbl

[15] D. Markushevich, Yu. G. Prokhorov, “Exceptional quotient singularities”, Amer. J. Math., 121:6 (1999), 1179–1189 | DOI | MR | Zbl

[16] I. Cheltsov, C. Shramov, “Six-dimensional exceptional quotient singularities”, Math. Res. Lett., 18:6 (2011), 1121–1139 | MR

[17] D. Sakovics, “Weakly-exceptional quotient singularities”, Cent. Eur. J. Math., 10:3 (2012), 885–902 | DOI | MR | Zbl

[18] I. Cheltsov, C. Shramov, “Weakly-exceptional singularities in higher dimensions”, J. Reine Angew. Math. (to appear)

[19] J. H. Lindsey, II, “On a six dimensional projective representation of the Hall–Janko group”, Pacific J. Math., 35 (1970), 175–186 | DOI | MR | Zbl

[20] M. Suzuki, “A simple group of order 448, 345, 497, 600”, Theory of finite groups (Cambridge, MA, 1968), Benjamin, New York, 1968, 113–119 | MR | Zbl

[21] I. Cheltsov, C. Shramov, “Nine-dimensional exceptional quotient singularities exist”, Proceedings of 18-th Gokova Geometry-Topology Conference, 2011, 85–96

[22] J. J. Rotman, An introduction to homological algebra, Universitext, Springer-Verlag, Berlin, 2009 | MR | Zbl

[23] R. M. Guralnick, P. H. Tiep, “Symmetric powers and a problem of Kollár and Larsen”, Invent. Math., 174:3 (2008), 505–554 | DOI | MR | Zbl

[24] V. Balaji, J. Kollár, “Holonomy groups of stable vector bundles”, Publ. Res. Inst. Math. Sci., 44:2 (2008), 183–211 | DOI | MR | Zbl

[25] GAP – Groups, Algorithms, Programming – a System for Computational Discrete Algebra, http://www.gap-system.org

[26] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl