Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2013_77_4_a9, author = {I. A. Cheltsov and K. A. Shramov}, title = {Sporadic simple groups and quotient singularities}, journal = {Izvestiya. Mathematics }, pages = {846--854}, publisher = {mathdoc}, volume = {77}, number = {4}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a9/} }
I. A. Cheltsov; K. A. Shramov. Sporadic simple groups and quotient singularities. Izvestiya. Mathematics , Tome 77 (2013) no. 4, pp. 846-854. http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a9/
[1] V. Shokurov, “Complements on surfaces”, J. Math. Sci. (New York), 102:2 (2000), 3876–3932 | DOI | MR | Zbl
[2] Yu. G. Prokhorov, “Blow-ups of canonical singularities”, Algebra (Moscow, 1998), de Gruyter, Berlin, 2000, 301–317 | MR | Zbl
[3] I. Cheltsov, C. Shramov, “On exceptional quotient singularities”, Geom. Topol., 15:4 (2011), 1843–1882 | DOI | MR | Zbl
[4] A. R. Iano-Fletcher, “Working with weighted complete intersections”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 101–173 | MR | Zbl
[5] G. Tian, “On Kähler–Einstein metrics on certain Kähler manifolds with $\mathrm{c}_{1}(M)>0$”, Invent. Math., 89:2 (1987), 225–246 | DOI | MR | Zbl
[6] S. A. Kudryavtsev, “Pure log terminal blow-ups”, Math. Notes, 69:6 (2001), 814–819 | DOI | DOI | MR | Zbl
[7] I. Cheltsov, C. Shramov, “Log canonical thresholds of smooth Fano threefolds”, Russian Math. Surveys, 63:5 (2008), 73–180 | DOI | DOI | MR | Zbl
[8] J. G. Thompson, “Invariants of finite groups”, J. Algebra, 69:1 (1981), 143–145 | DOI | MR | Zbl
[9] H. F. Blickfeldt, Finite collineation groups, Univ. of Chicago Press, Chicago, 1917 | Zbl
[10] R. Brauer, “Über endliche lineare Gruppen von Primzahlgrad”, Math. Ann., 169:1 (1967), 73–96 | DOI | MR | Zbl
[11] J. H. Lindsey, II, “Finite linear groups of degree six”, Canad. J. Math., 23 (1971), 771–790 | DOI | MR | Zbl
[12] D. B. Wales, “Finite linear groups of degree seven. I”, Canad. J. Math., 21 (1969), 1042–1056 | DOI | MR | Zbl
[13] D. B. Wales, “Finite linear groups of degree seven. II”, Pacific J. Math., 34 (1970), 207–235 | DOI | MR | Zbl
[14] W. Feit, “The current situation in the theory of finite simple groups”, Actes du Congrès International des Mathématiciens (Nice, 1970), Gauthier-Villars, Paris, 1971, 55–93 | MR | Zbl
[15] D. Markushevich, Yu. G. Prokhorov, “Exceptional quotient singularities”, Amer. J. Math., 121:6 (1999), 1179–1189 | DOI | MR | Zbl
[16] I. Cheltsov, C. Shramov, “Six-dimensional exceptional quotient singularities”, Math. Res. Lett., 18:6 (2011), 1121–1139 | MR
[17] D. Sakovics, “Weakly-exceptional quotient singularities”, Cent. Eur. J. Math., 10:3 (2012), 885–902 | DOI | MR | Zbl
[18] I. Cheltsov, C. Shramov, “Weakly-exceptional singularities in higher dimensions”, J. Reine Angew. Math. (to appear)
[19] J. H. Lindsey, II, “On a six dimensional projective representation of the Hall–Janko group”, Pacific J. Math., 35 (1970), 175–186 | DOI | MR | Zbl
[20] M. Suzuki, “A simple group of order 448, 345, 497, 600”, Theory of finite groups (Cambridge, MA, 1968), Benjamin, New York, 1968, 113–119 | MR | Zbl
[21] I. Cheltsov, C. Shramov, “Nine-dimensional exceptional quotient singularities exist”, Proceedings of 18-th Gokova Geometry-Topology Conference, 2011, 85–96
[22] J. J. Rotman, An introduction to homological algebra, Universitext, Springer-Verlag, Berlin, 2009 | MR | Zbl
[23] R. M. Guralnick, P. H. Tiep, “Symmetric powers and a problem of Kollár and Larsen”, Invent. Math., 174:3 (2008), 505–554 | DOI | MR | Zbl
[24] V. Balaji, J. Kollár, “Holonomy groups of stable vector bundles”, Publ. Res. Inst. Math. Sci., 44:2 (2008), 183–211 | DOI | MR | Zbl
[25] GAP – Groups, Algorithms, Programming – a System for Computational Discrete Algebra, http://www.gap-system.org
[26] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl