Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2013_77_4_a7, author = {V. V. Przyjalkowski}, title = {Weak {Landau--Ginzburg} models for smooth {Fano} threefolds}, journal = {Izvestiya. Mathematics }, pages = {772--794}, publisher = {mathdoc}, volume = {77}, number = {4}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a7/} }
V. V. Przyjalkowski. Weak Landau--Ginzburg models for smooth Fano threefolds. Izvestiya. Mathematics , Tome 77 (2013) no. 4, pp. 772-794. http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a7/
[1] M. Kontsevich, “Homological algebra of mirror symmetry”, Proceedings of the international congress of mathematicians (Zürich, 1994), Birkhäuzer, Basel, 1995, 120–139 | MR | Zbl
[2] L. Katzarkov, M. Kontsevich, T. Pantev, “Hodge theoretic aspects of mirror symmetry”, From Hodge theory to integrability and TQFT $tt^*$-geometry (Augsburg, Germany, 2007), Proc. Sympos. Pure Math., 78, Amer. Math. Soc., Providence, RI, 2008, 87–174 | MR | Zbl
[3] V. Przyjalkowski, “On Landau–Ginzburg models for Fano varieties”, Commun. Number Theory Phys., 1:4 (2008), 713–728 ; “II”, Изв. АН СССР. Сер. матем., 42:3 (1978), 506–549 | MR | Zbl | MR | Zbl
[4] V. A. Iskovskih, “Fano 3-folds. I”, Math. USSR-Izv., 11:3 (1977), 485–527 ; “II”, Math. USSR-Izv., 12:3 (1978), 469–506 | DOI | DOI | MR | MR | Zbl | Zbl | Zbl | Zbl
[5] C. van Enckevort, D. van Straten, “Monodromy calculations of fourth order equations of Calabi–Yau type”, Mirror symmetry V, AMS/IP Stud. Adv. Math., 38, Amer. Math. Soc., Providence, RI, 2006, 539–559 | MR | Zbl
[6] N. O. Ilten, J. Lewis, V. Przyjalkowski, “Toric degenerations of Fano threefolds giving weak Landau–Ginzburg models”, J. Algebra, 374 (2013), 104–121 | DOI | MR
[7] L. Katzarkov, V. Przyjalkowski, “Landau–Ginzburg models – old and new”, Proceedings of the 18th Gokova geometry-topology conference, International Press, Somerville, MA, 2012, 97–124
[8] C. Doran, A. Harder, L. Katzarkov, J. Lewis, V. Przyjalkowski, “Modularity of Fano threefolds” (to appear)
[9] M. Abouzaid, D. Auroux, L. Katzarkov, Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces, arXiv: 1205.0053
[10] I. Cheltsov, L. Katzarkov, V. Przyjalkowski, “Birational geometry via moduli spaces”, Birational geometry, rational curves, and arithmetic – Simons symposium, Springer-Verlag, New York, 2013, 93–132
[11] Yu. I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, Amer. Math. Soc. Colloq. Publ., 47, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl
[12] V. Golyshev, J. Stienstra, “Fuchsian equations of type DN”, Commun. Number Theory Phys., 1:2 (2007), 323–346 | MR | Zbl
[13] V. V. Przyjalkowski, “Minimal Gromov–Witten rings”, Izv. Math., 72:6 (2008), 1253–1272 | DOI | DOI | MR | Zbl
[14] V. V. Golyshev, “Classification problems and mirror duality”, Surveys in geometry and number theory: reports on contemporary Russian mathematics, London Math. Soc. Lecture Note Ser., 338, Cambridge Univ. Press, Cambridge, 2007, 88–121 | MR | Zbl
[15] F. Beukers, J. Stienstra, “On the Picard–Fuchs equation and the formal Brauer group of certain elliptic K3-surfaces”, Math. Ann., 271:2 (1985), 269–304 | DOI | MR | Zbl
[16] F. Beukers, “Irrationality of $\pi^2$, periods of an elliptic curve and $\Gamma^1(5)$”, Diophantine approximations and transcendental numbers (Luminy, 1982), Progr. Math., 31, Birkhäuser, Boston, MA, 1984, 47–66 | MR | Zbl
[17] V. I. Danilov, A. G. Khovanskiǐ, “Newton polyhedra and an algorithm for computing Hodge–Deligne numbers”, Math. USSR-Izv., 29:2 (1987), 279–298 | DOI | MR | Zbl
[18] V. V. Batyrev, I. Ciocan-Fontanine, B. Kim, D. van Straten, “Conifold transitions and mirror symmetry for Calabi–Yau complete intersections in Grassmannians”, Nuclear Phys. B, 514:3 (1998), 640–666 | DOI | MR | Zbl
[19] V. V. Batyrev, “Toric degenerations of Fano varieties and constructing mirror manifolds”, The Fano conference (Torino, Italy, 2002), Univ. di Torino, Torino, 2004, 109–122 | MR | Zbl
[20] S. S. Galkin, Toricheskie vyrozhdeniya mnogoobrazii Fano, Dis. $\dots$ kand. fiz.-matem. nauk, MIAN, M., 2008; http://www.mi.ras.ru/~galkin/papers/disser.pdf
[21] V. V. Batyrev, “Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties”, J. Algebraic Geom., 3:3 (1994), 493–535 | MR | Zbl
[22] H. Hori, C. Vafa, Mirror symmetry, arXiv: hep-th/0002222
[23] V. Przyjalkowski, C. Shramov, On Hodge numbers of complete intersections and Landau–Ginzburg models, arXiv: 1305.4377
[24] V. V. Przyjalkowski, “Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties”, Sb. Math., 198:9 (2007), 1325–1340 | DOI | DOI | MR | Zbl
[25] V. Przyjalkowski, “Hori–Vafa mirror models for complete intersections in weighted projective spaces and weak Landau–Ginzburg models”, Cent. Eur. J. Math., 9:5 (2011), 972–977 | DOI | MR | Zbl
[26] T. Eguchi, K. Hori, C.-Sh. Xiong, “Gravitational quantum cohomology”, Internat. J. Modern Phys. A, 12:9 (1997), 1743–1782 | DOI | MR | Zbl
[27] A. Bertram, I. Ciocan-Fontanine, B. Kim, “Two proofs of a conjecture of Hori and Vafa”, Duke Math. J., 126:1 (2005), 101–136 | DOI | MR | Zbl
[28] V. V. Batyrev, I. Ciocan-Fontanine, B. Kim, D. van Straten, “Mirror symmetry and toric degenerations of partial flag manifolds”, Acta Math., 184:1 (2000), 1–39 | DOI | MR | Zbl
[29] A. Givental, “Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture”, Topics in singularity theory, Amer. Math. Soc. Transl. Ser. 2, 180, Amer. Math. Soc., Providence, RI, 1997, 103–115 | MR | Zbl
[30] K. Rietsch, “A mirror symmetric solution to the quantum Toda lattice”, Comm. Math. Phys., 309:1 (2012), 23–49 | DOI | MR | Zbl
[31] A. Bondal, S. Galkin, Mirror symmetry for minuscule varietics, IPMV 11-0101
[32] V. V. Przyjalkowski, “Gromov–Witten invariants of Fano threefolds of genera 6 and 8”, Sb. Math., 198:3 (2007), 433–446 | DOI | DOI | MR | Zbl
[33] F. Beukers, C. A. M. Peters, “A family of K3 surfaces and $\zeta(3)$”, J. Reine Angew. Math., 351 (1984), 42–54 | DOI | MR | Zbl
[34] A. Corti, V. Golyshev, “Hypergeometric equations and weighted projective spaces”, Sci. China Math., 54:8 (2011), 1577–1590 | DOI | MR | Zbl
[35] A. Iliev, L. Katzarkov, V. Przyjalkowski, “Double solids, categories and non-rationality”, Proc. Edinb. Math. Soc. (2), Shokurov's volume, 2013 (to appear); arXiv: 1102.2130
[36] M. Gross, L. Katzarkov, H. Ruddat, “Towards mirror symmetry for varieties of general type”, J. Adv. Math. Stud (to appear)
[37] L. Katzarkov, V. Przyjalkowski, “Generalized homological mirror symmetry and cubics”, Proc. Steklov Inst. Math., 264:1 (2009), 87–95 | DOI | MR
[38] T. Coates, A. Corti, S. Galkin, V. Golyshev, A. Kasprzyk, Fano varieties and extremal Laurent polynomials. A collaborative research blog, arXiv: http://arxiv.org/abs/coates.ma.ic.ac.uk/fanosearch
[39] Yu. G. Prokhorov, “On the degree of Fano threefolds with canonical Gorenstein singularities”, Sb. Math., 196:1 (2005), 77–114 | DOI | DOI | MR | Zbl
[40] K. Altmann, “The versal deformation of an isolated toric Gorenstein singularity”, Invent. Math., 128:3 (1997), 443–479 | DOI | MR | Zbl
[41] D. Auroux, L. Katzarkov, D. Orlov, “Mirror symmetry for weighted projective planes and their noncommutative deformations”, Ann. of Math. (2), 167:3 (2008), 867–943 | DOI | MR | Zbl
[42] A. Kasprzyk, “Canonical toric Fano threefolds”, Canad. J. Math., 62:6 (2010), 1293–1309 | DOI | MR | Zbl
[43] P. Hacking, Yu. Prokhorov, “Smoothable del Pezzo surfaces with quotient singularities”, Compos. Math., 146:1 (2010), 169–192 | DOI | MR | Zbl
[44] S. Galkin, A. Usnich, Mutations of potentials, arXiv: http://arxiv.org/abs/member.ipmu.jp/sergey.galkin/papers/ipmu-10-0100.pdf