Weak Landau--Ginzburg models for smooth Fano threefolds
Izvestiya. Mathematics , Tome 77 (2013) no. 4, pp. 772-794.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Landau–Ginzburg models for smooth Fano threefolds of the principal series and prove that they can be represented by Laurent polynomials. We check that these models can be compactified to open Calabi–Yau varieties. In the spirit of Katzarkov's programme we prove that the numbers of irreducible components of the central fibres of compactifications of these pencils are equal to the dimensions of intermediate Jacobians of the corresponding Fano varieties plus 1. In particular, these numbers are independent of the choice of compactification. We state most of the known methods for finding Landau–Ginzburg models in terms of Laurent polynomials. We discuss the Laurent polynomial representation of the Landau–Ginzburg models of Fano varieties and state some related problems.
Keywords: weak Landau–Ginzburg models, Fano varieties, toric degeneration, intermediate Jacobian.
@article{IM2_2013_77_4_a7,
     author = {V. V. Przyjalkowski},
     title = {Weak {Landau--Ginzburg} models for smooth {Fano} threefolds},
     journal = {Izvestiya. Mathematics },
     pages = {772--794},
     publisher = {mathdoc},
     volume = {77},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a7/}
}
TY  - JOUR
AU  - V. V. Przyjalkowski
TI  - Weak Landau--Ginzburg models for smooth Fano threefolds
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 772
EP  - 794
VL  - 77
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a7/
LA  - en
ID  - IM2_2013_77_4_a7
ER  - 
%0 Journal Article
%A V. V. Przyjalkowski
%T Weak Landau--Ginzburg models for smooth Fano threefolds
%J Izvestiya. Mathematics 
%D 2013
%P 772-794
%V 77
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a7/
%G en
%F IM2_2013_77_4_a7
V. V. Przyjalkowski. Weak Landau--Ginzburg models for smooth Fano threefolds. Izvestiya. Mathematics , Tome 77 (2013) no. 4, pp. 772-794. http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a7/

[1] M. Kontsevich, “Homological algebra of mirror symmetry”, Proceedings of the international congress of mathematicians (Zürich, 1994), Birkhäuzer, Basel, 1995, 120–139 | MR | Zbl

[2] L. Katzarkov, M. Kontsevich, T. Pantev, “Hodge theoretic aspects of mirror symmetry”, From Hodge theory to integrability and TQFT $tt^*$-geometry (Augsburg, Germany, 2007), Proc. Sympos. Pure Math., 78, Amer. Math. Soc., Providence, RI, 2008, 87–174 | MR | Zbl

[3] V. Przyjalkowski, “On Landau–Ginzburg models for Fano varieties”, Commun. Number Theory Phys., 1:4 (2008), 713–728 ; “II”, Изв. АН СССР. Сер. матем., 42:3 (1978), 506–549 | MR | Zbl | MR | Zbl

[4] V. A. Iskovskih, “Fano 3-folds. I”, Math. USSR-Izv., 11:3 (1977), 485–527 ; “II”, Math. USSR-Izv., 12:3 (1978), 469–506 | DOI | DOI | MR | MR | Zbl | Zbl | Zbl | Zbl

[5] C. van Enckevort, D. van Straten, “Monodromy calculations of fourth order equations of Calabi–Yau type”, Mirror symmetry V, AMS/IP Stud. Adv. Math., 38, Amer. Math. Soc., Providence, RI, 2006, 539–559 | MR | Zbl

[6] N. O. Ilten, J. Lewis, V. Przyjalkowski, “Toric degenerations of Fano threefolds giving weak Landau–Ginzburg models”, J. Algebra, 374 (2013), 104–121 | DOI | MR

[7] L. Katzarkov, V. Przyjalkowski, “Landau–Ginzburg models – old and new”, Proceedings of the 18th Gokova geometry-topology conference, International Press, Somerville, MA, 2012, 97–124

[8] C. Doran, A. Harder, L. Katzarkov, J. Lewis, V. Przyjalkowski, “Modularity of Fano threefolds” (to appear)

[9] M. Abouzaid, D. Auroux, L. Katzarkov, Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces, arXiv: 1205.0053

[10] I. Cheltsov, L. Katzarkov, V. Przyjalkowski, “Birational geometry via moduli spaces”, Birational geometry, rational curves, and arithmetic – Simons symposium, Springer-Verlag, New York, 2013, 93–132

[11] Yu. I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, Amer. Math. Soc. Colloq. Publ., 47, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[12] V. Golyshev, J. Stienstra, “Fuchsian equations of type DN”, Commun. Number Theory Phys., 1:2 (2007), 323–346 | MR | Zbl

[13] V. V. Przyjalkowski, “Minimal Gromov–Witten rings”, Izv. Math., 72:6 (2008), 1253–1272 | DOI | DOI | MR | Zbl

[14] V. V. Golyshev, “Classification problems and mirror duality”, Surveys in geometry and number theory: reports on contemporary Russian mathematics, London Math. Soc. Lecture Note Ser., 338, Cambridge Univ. Press, Cambridge, 2007, 88–121 | MR | Zbl

[15] F. Beukers, J. Stienstra, “On the Picard–Fuchs equation and the formal Brauer group of certain elliptic K3-surfaces”, Math. Ann., 271:2 (1985), 269–304 | DOI | MR | Zbl

[16] F. Beukers, “Irrationality of $\pi^2$, periods of an elliptic curve and $\Gamma^1(5)$”, Diophantine approximations and transcendental numbers (Luminy, 1982), Progr. Math., 31, Birkhäuser, Boston, MA, 1984, 47–66 | MR | Zbl

[17] V. I. Danilov, A. G. Khovanskiǐ, “Newton polyhedra and an algorithm for computing Hodge–Deligne numbers”, Math. USSR-Izv., 29:2 (1987), 279–298 | DOI | MR | Zbl

[18] V. V. Batyrev, I. Ciocan-Fontanine, B. Kim, D. van Straten, “Conifold transitions and mirror symmetry for Calabi–Yau complete intersections in Grassmannians”, Nuclear Phys. B, 514:3 (1998), 640–666 | DOI | MR | Zbl

[19] V. V. Batyrev, “Toric degenerations of Fano varieties and constructing mirror manifolds”, The Fano conference (Torino, Italy, 2002), Univ. di Torino, Torino, 2004, 109–122 | MR | Zbl

[20] S. S. Galkin, Toricheskie vyrozhdeniya mnogoobrazii Fano, Dis. $\dots$ kand. fiz.-matem. nauk, MIAN, M., 2008; http://www.mi.ras.ru/~galkin/papers/disser.pdf

[21] V. V. Batyrev, “Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties”, J. Algebraic Geom., 3:3 (1994), 493–535 | MR | Zbl

[22] H. Hori, C. Vafa, Mirror symmetry, arXiv: hep-th/0002222

[23] V. Przyjalkowski, C. Shramov, On Hodge numbers of complete intersections and Landau–Ginzburg models, arXiv: 1305.4377

[24] V. V. Przyjalkowski, “Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties”, Sb. Math., 198:9 (2007), 1325–1340 | DOI | DOI | MR | Zbl

[25] V. Przyjalkowski, “Hori–Vafa mirror models for complete intersections in weighted projective spaces and weak Landau–Ginzburg models”, Cent. Eur. J. Math., 9:5 (2011), 972–977 | DOI | MR | Zbl

[26] T. Eguchi, K. Hori, C.-Sh. Xiong, “Gravitational quantum cohomology”, Internat. J. Modern Phys. A, 12:9 (1997), 1743–1782 | DOI | MR | Zbl

[27] A. Bertram, I. Ciocan-Fontanine, B. Kim, “Two proofs of a conjecture of Hori and Vafa”, Duke Math. J., 126:1 (2005), 101–136 | DOI | MR | Zbl

[28] V. V. Batyrev, I. Ciocan-Fontanine, B. Kim, D. van Straten, “Mirror symmetry and toric degenerations of partial flag manifolds”, Acta Math., 184:1 (2000), 1–39 | DOI | MR | Zbl

[29] A. Givental, “Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture”, Topics in singularity theory, Amer. Math. Soc. Transl. Ser. 2, 180, Amer. Math. Soc., Providence, RI, 1997, 103–115 | MR | Zbl

[30] K. Rietsch, “A mirror symmetric solution to the quantum Toda lattice”, Comm. Math. Phys., 309:1 (2012), 23–49 | DOI | MR | Zbl

[31] A. Bondal, S. Galkin, Mirror symmetry for minuscule varietics, IPMV 11-0101

[32] V. V. Przyjalkowski, “Gromov–Witten invariants of Fano threefolds of genera 6 and 8”, Sb. Math., 198:3 (2007), 433–446 | DOI | DOI | MR | Zbl

[33] F. Beukers, C. A. M. Peters, “A family of K3 surfaces and $\zeta(3)$”, J. Reine Angew. Math., 351 (1984), 42–54 | DOI | MR | Zbl

[34] A. Corti, V. Golyshev, “Hypergeometric equations and weighted projective spaces”, Sci. China Math., 54:8 (2011), 1577–1590 | DOI | MR | Zbl

[35] A. Iliev, L. Katzarkov, V. Przyjalkowski, “Double solids, categories and non-rationality”, Proc. Edinb. Math. Soc. (2), Shokurov's volume, 2013 (to appear); arXiv: 1102.2130

[36] M. Gross, L. Katzarkov, H. Ruddat, “Towards mirror symmetry for varieties of general type”, J. Adv. Math. Stud (to appear)

[37] L. Katzarkov, V. Przyjalkowski, “Generalized homological mirror symmetry and cubics”, Proc. Steklov Inst. Math., 264:1 (2009), 87–95 | DOI | MR

[38] T. Coates, A. Corti, S. Galkin, V. Golyshev, A. Kasprzyk, Fano varieties and extremal Laurent polynomials. A collaborative research blog, arXiv: http://arxiv.org/abs/coates.ma.ic.ac.uk/fanosearch

[39] Yu. G. Prokhorov, “On the degree of Fano threefolds with canonical Gorenstein singularities”, Sb. Math., 196:1 (2005), 77–114 | DOI | DOI | MR | Zbl

[40] K. Altmann, “The versal deformation of an isolated toric Gorenstein singularity”, Invent. Math., 128:3 (1997), 443–479 | DOI | MR | Zbl

[41] D. Auroux, L. Katzarkov, D. Orlov, “Mirror symmetry for weighted projective planes and their noncommutative deformations”, Ann. of Math. (2), 167:3 (2008), 867–943 | DOI | MR | Zbl

[42] A. Kasprzyk, “Canonical toric Fano threefolds”, Canad. J. Math., 62:6 (2010), 1293–1309 | DOI | MR | Zbl

[43] P. Hacking, Yu. Prokhorov, “Smoothable del Pezzo surfaces with quotient singularities”, Compos. Math., 146:1 (2010), 169–192 | DOI | MR | Zbl

[44] S. Galkin, A. Usnich, Mutations of potentials, arXiv: http://arxiv.org/abs/member.ipmu.jp/sergey.galkin/papers/ipmu-10-0100.pdf