Weak Landau--Ginzburg models for smooth Fano threefolds
Izvestiya. Mathematics , Tome 77 (2013) no. 4, pp. 772-794

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Landau–Ginzburg models for smooth Fano threefolds of the principal series and prove that they can be represented by Laurent polynomials. We check that these models can be compactified to open Calabi–Yau varieties. In the spirit of Katzarkov's programme we prove that the numbers of irreducible components of the central fibres of compactifications of these pencils are equal to the dimensions of intermediate Jacobians of the corresponding Fano varieties plus 1. In particular, these numbers are independent of the choice of compactification. We state most of the known methods for finding Landau–Ginzburg models in terms of Laurent polynomials. We discuss the Laurent polynomial representation of the Landau–Ginzburg models of Fano varieties and state some related problems.
Keywords: weak Landau–Ginzburg models, Fano varieties, toric degeneration, intermediate Jacobian.
@article{IM2_2013_77_4_a7,
     author = {V. V. Przyjalkowski},
     title = {Weak {Landau--Ginzburg} models for smooth {Fano} threefolds},
     journal = {Izvestiya. Mathematics },
     pages = {772--794},
     publisher = {mathdoc},
     volume = {77},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a7/}
}
TY  - JOUR
AU  - V. V. Przyjalkowski
TI  - Weak Landau--Ginzburg models for smooth Fano threefolds
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 772
EP  - 794
VL  - 77
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a7/
LA  - en
ID  - IM2_2013_77_4_a7
ER  - 
%0 Journal Article
%A V. V. Przyjalkowski
%T Weak Landau--Ginzburg models for smooth Fano threefolds
%J Izvestiya. Mathematics 
%D 2013
%P 772-794
%V 77
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a7/
%G en
%F IM2_2013_77_4_a7
V. V. Przyjalkowski. Weak Landau--Ginzburg models for smooth Fano threefolds. Izvestiya. Mathematics , Tome 77 (2013) no. 4, pp. 772-794. http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a7/