Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2013_77_4_a6, author = {V. L. Popov}, title = {Tori in the {Cremona} groups}, journal = {Izvestiya. Mathematics }, pages = {742--771}, publisher = {mathdoc}, volume = {77}, number = {4}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a6/} }
V. L. Popov. Tori in the Cremona groups. Izvestiya. Mathematics , Tome 77 (2013) no. 4, pp. 742-771. http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a6/
[1] V. L. Popov, Problems for problem session, 2005, arXiv: math/0504517
[2] V. L. Popov, “Roots of the affine Cremona group”, Affine algebraic geometry (Seville, Spain, 2003), Contemp. Math., 369, Amer. Math. Soc., Providence, RI, 2005, 12–13 | MR | Zbl
[3] A. Liendo, “Roots of the affine Cremona group”, Transform. Groups, 16:4 (2011), 1137–1142 | DOI | MR | Zbl
[4] A. Białynicki-Birula, “Remarks on the action of an algebraic torus on $k^n$”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 14 (1966), 177–181 | MR | Zbl
[5] A. Białynicki-Birula, “Remarks on the action of an algebraic torus on $k^n$. II”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 15 (1967), 123–125 | MR | Zbl
[6] J. Blanc, “Conjugacy classes of affine automorphisms of $\mathbf K^n$ and linear automorphisms of $\mathbf P^n$ in the Cremona groups”, Manuscripta Math., 119:2 (2006), 225–241 | DOI | MR | Zbl
[7] J.-P. Serre, “Le groupe de Cremona et ses sous-groupes finis.”, Séminaire Bourbaki. Volume 2008/2009. Exposés 997-1011, Astérisque, 332, Soc. Math. de France, Paris, 2010, 75–100 | MR | Zbl
[8] J.-P. Serre, “Faisceaux algébriques cohérents”, Ann. of Math. (2), 61:2 (1955), 197–278 | DOI | MR | Zbl
[9] A. Borel, Linear algebraic groups, Grad. Texts in Math., 126, Springer-Verlag, New York, 1991 | MR | Zbl
[10] V. L. Popov, E. B. Vinberg, “Invariant theory”, Algebraic Geometry IV, Encyclopaedia Math. Sci., 55, Springer-Verlag, Berlin, 1994, 123–284 | DOI | MR | MR | Zbl | Zbl
[11] G. Laumon, “Comparaison de caracteristiques d'Euler-Poincare en cohomologie $l$-adique”, C. R. Acad. Sci. Paris Ser. I Math., 292 (1981), 209–212 | MR | Zbl
[12] H. Kraft, V. L. Popov, “Semisimple group actions on the three-dimensional affine space are linear”, Comment. Math. Helv., 60:3 (1985), 466–479 | DOI | MR | Zbl
[13] C. P. Ramanujam, “A note on automorphism groups of algebraic varieties”, Math. Ann., 156:1 (1964), 25–33 | DOI | MR | Zbl
[14] J. Blanc, “Groupes de Cremona, connexité et simplicité”, Ann. Sci. Éc. Norm. Supér. (4), 43:2 (2010), 357–364 | MR | Zbl
[15] V. L. Popov, “Some subgroups of the Cremona groups”, Proceedings of Conference on Affine Algebraic Geometry (Osaka, 2011), World Scientific
[16] E. B. Vinberg, A course in algebra, Grad. Stud. Math., 56, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl
[17] M. Marcus, H. Minc, A survey of matrix theory and matrix inequalities, Allyn and Bacon, Boston, MA, 1964 | MR | MR | Zbl
[18] J.-P. Serre, “Sous-groupes finis des groupes de Lie”, Séminaire Bourbaki. Volume 1998/99. Exposés 850–864, Astérisque, 266, Paris, 2000, 415–430 | MR | Zbl
[19] I. R. Shafarevich, A. O. Remizov, Linear algebra and geometry, Springer-Verlag, Heidelberg, 2013 | MR | Zbl
[20] A. Borel, J.-P. Serre, “Théorèmes de finitude en cohomoplogie galoisienne”, Comment. Math. Helv., 39 (1964), 111–164 | DOI | MR | Zbl
[21] M. Demazure, “Sous-groupes algebriques de rang maximum du groupe de Cremona”, Ann. Sci. École Norm. Sup. (4), 3 (1970), 507–588 | MR | Zbl
[22] S. Kaliman, M. Koras, L. Makar-Limanov, P. Russell, “${\mathbb C}^*$-actions on ${\mathbb C}^3$ are linearizable”, Electron. Res. Announc. Amer. Math. Soc., 3 (1997), 63–71 | DOI | MR | Zbl
[23] N. Gupta, A counter-example to the Cancellation Problem for the affine space ${\mathbf A}^3$ in characteristic $p$, arXiv: 1208.0483
[24] V. L. Popov, “Stability criteria for the action of a semisimple group on a factorial manifold”, Math. USSR-Izv., 4:3 (1970), 527–535 | DOI | MR | Zbl | Zbl
[25] M. F. Atiyah, I. G. McDonald, Introduction to commutative algebra, Addison-Wesley, Reading, MA, 1969 | MR | MR | Zbl | Zbl
[26] D. Luna, “Slices étalés”, Bull. Soc. Math. France, 33 (1973), 81–105 | MR | Zbl
[27] J. Harris, Algebraic geometry, Grad. Texts in Math., 133, Springer-Verlag, New York, 1992 | DOI | MR | Zbl
[28] H. Matsumura, “On algebraic groups of birational transformations”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 34 (1963), 151–155 | MR | Zbl
[29] R. Steinberg, “Regular elements of semisimple algebraic groups”, Inst. Hautes Études Sci. Publ. Math., 25:1 (1965), 49–80 | DOI | MR | Zbl
[30] I. R. Shafarevich, “On some infinite dimensional groups”, Rend. Mat. e Appl. (5), 25:1–2 (1966), 208–212 | MR | Zbl
[31] I. R. Šafarevič, “On some infinite-dimensional groups. II”, Math. USSR-Izv., 18:1 (1982), 185–194 | DOI | MR | Zbl | Zbl
[32] J. Blanc, “The number of conjugacy classes of elements of the Cremona group of some given finite order”, Bull. Soc. Math. France, 135:3 (2007), 419–434 | MR | Zbl
[33] T. Igarashi, Finite subgroups of the automorphism group of the affine plane, Thesis, Osaka University, 1977
[34] V. L. Popov, Tori in Cremona groups, Essential Dimension and Cremona Groups, talk delivered at the International workshop, Chern Institute of Mathematics, Nankai University, Tianjin, China, June 11–15, 2012 http://www.nim.nankai.edu.cn/activites/conferences/hy20120611/index.htm
[35] T. de Fernex, “On planar Cremona maps of prime order”, Nagoya Math. J., 174 (2004), 1–28 | MR | Zbl
[36] J. Blanc, Finite abelian subgroups of the Cremona group of the plane, Thèse No 3777, Université de Genève, Faculté des Sciences, 2006
[37] A. Beauville, “$p$-elementary subgroups of the Cremona group”, J. Algebra, 314:2 (2007), 553–564 | DOI | MR | Zbl