Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2013_77_4_a5, author = {D. V. Osipov}, title = {The unramified two-dimensional {Langlands} correspondence}, journal = {Izvestiya. Mathematics }, pages = {714--741}, publisher = {mathdoc}, volume = {77}, number = {4}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a5/} }
D. V. Osipov. The unramified two-dimensional Langlands correspondence. Izvestiya. Mathematics , Tome 77 (2013) no. 4, pp. 714-741. http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a5/
[1] M. M. Kapranov, “Analogies between the Langlands correspondence and topological quantum field theory”, Functional analysis on the eve of the 21st century (New Brunswick, NJ, 1993), v. 1, Progr. Math., 131, Birkhäuser, Boston, MA, 1995, 119–151 | MR | Zbl
[2] D. V. Osipov, “$n$-dimensional local fields and adeles on $n$-dimensional schemes”, Surveys in contemporary mathematics, London Math. Soc. Lecture Note Ser., 347, Cambridge Univ. Press, Cambridge, 2008, 131–164 | MR | Zbl
[3] A. Huber, “On the Parshin–Beilinson Adeles for schemes”, Abh. Math. Sem. Univ. Hamburg, 61:1 (1991), 249–273 | DOI | MR | Zbl
[4] D. V. Osipov, A. N. Parshin, “Harmonic analysis on local fields and adelic spaces. II”, Izv. Math., 75:4 (2011), 749–814 | DOI | DOI | MR | Zbl
[5] A. N. Parshin, “Questions and remarks to the Langlands programme”, Russian Math. Surveys, 67:3 (2012), 509–539 | DOI | DOI | Zbl
[6] W. Raskind, “Abelian class field theory of arithmetic schemes”, $K$-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992), Proc. Sympos. Pure Math., 58, Part 1, Amer. Math. Soc., Providence, RI, 1995, 85–187 | DOI | MR | Zbl
[7] M. M. Kapranov, V. A. Voevodsky, “2-categories and Zamolodchikov tetrahedra equations”, Algebraic groups and their generalizations: quantum and infinite-dimensional methods (University Park, PA, 1991), Proc. Sympos. Pure Math., 56, Part 2, Amer. Math. Soc., Providence, RI, 1994, 177–259 | DOI | MR | Zbl
[8] N. Ganter, M. Kapranov, “Representation and character theory in 2-categories”, Adv. Math., 217:5 (2008), 2268–2300 | DOI | MR | Zbl
[9] J. Elgueta, “Representation theory of 2-groups on Kapranov and Voevodsky's 2-vector spaces”, Adv. Math., 213:1 (2007), 53–92 | DOI | MR | Zbl
[10] P. Deligne, “Sommes de Gauss cubiques et revêtements de $\operatorname{SL}(2)$, d'après S. J. Patterson”, Séminaire Bourbaki 1978/79, Exp. No. 539, Lecture Notes in Math., 770, Springer-Verlag, Berlin, 1980, 244–277 | DOI | MR | Zbl
[11] R. Ya. Budylin, “An adelic construction of Chern classes”, Sb. Math., 202:11 (2011), 1637–1659 | DOI | DOI | MR | Zbl
[12] D. Osipov, “Adeles on $n$-dimensional schemes and categories $C_n$”, Internat. J. Math., 18:3 (2007), 269–279 | DOI | MR | Zbl
[13] D. V. Osipov, “Central extensions and reciprocity laws on algebraic surfaces”, Sb. Math., 196:10 (2005), 1503–1527 | DOI | DOI | MR | Zbl
[14] E. Arbarello, C. De Concini, V. G. Kac, “The infinite wedge representation and the reciprocity law for algebraic curves”, Theta functions – Bowdoin 1987, Part 1 (Brunswick, ME, 1987), Proc. Sympos. Pure Math., 49, Amer. Math. Soc., Providence, RI, 1989, 171–190 | DOI | MR | Zbl
[15] T. Fimmel, A. N. Parshin, An introduction to the higher adelic theory, Preprint, 1999
[16] J. Milnor, Introduction to algebraic $K$-theory, Princeton Univ. Press, Princeton, NJ, 1971 | MR | MR | Zbl | Zbl
[17] K. Kato, “Milnor $K$-theory and the Chow group of zero cycles”, Applications of algebraic $K$-theory to algebraic geometry and number theory (Boulder, CO, 1983), Contemp. Math., 55, Amer. Math. Soc., Providence, RI, 1986, 241–253 | DOI | MR | Zbl
[18] D. Prasad, A. Raghuram, “Representation theory of $\operatorname {GL}(n)$ over non-Archimedean local fields”, School on Automorphic Forms on $\operatorname {GL}(n)$, ICTP Lect. Notes, 21, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2008, 159–205 | MR | Zbl
[19] T. Wedhorn, “The local Langlands correspondence for $\operatorname {GL}(n)$ over $p$-adic fields”, School on Automorphic Forms on $\operatorname {GL}(n)$, ICTP Lect. Notes, 21, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2008, 237–320 | MR | Zbl
[20] I. N. Bernshtein, A. V. Zelevinskii, “Representations of the group $\operatorname {GL}(n,F)$ where $F$ is a non-archimedean local field”, Russian Math. Surveys, 31:3 (1976), 1–68 | DOI | MR | Zbl | Zbl
[21] A. N. Parshin, “Local class field theory”, Proc. Steklov Inst. Math., 165 (1985), 157–185 | MR | Zbl | Zbl
[22] M. Kapranov, “Double affine Hecke algebras and 2-dimensional local fields”, J. Amer. Math. Soc., 14:1 (2001), 239–262 | DOI | MR | Zbl
[23] N. Ganter, Inner products of $2$-representation, arXiv: 1110.1711
[24] D. Gaitsgory, D. Kazhdan, “Representations of algebraic groups over a 2-dimensional local field”, Geom. Funct. Anal., 14:3 (2004), 535–574 | DOI | MR | Zbl