Mots-clés : tangent maps, multipliers.
@article{IM2_2013_77_4_a4,
author = {Yu. G. Zarhin},
title = {One-dimensional polynomial maps, periodic points and multipliers},
journal = {Izvestiya. Mathematics},
pages = {700--713},
year = {2013},
volume = {77},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a4/}
}
Yu. G. Zarhin. One-dimensional polynomial maps, periodic points and multipliers. Izvestiya. Mathematics, Tome 77 (2013) no. 4, pp. 700-713. http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a4/
[1] J.-P. Serre, Lie algebras and Lie groups, Lecture Notes in Math., 1500, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl
[2] Yu. G. Zarhin, “Polynomials in one variable and ranks of certain tangent maps”, Math. Notes, 91:4 (2012), 508–516 | DOI | DOI
[3] E. Rees, On a paper by Y. G. Zarhin, arXiv: abs/1105.4156
[4] G. T. Buzzard, S. L. Hruska, Yu. Ilyashenko, “Kupka–Smale theorem for polynomial automorphisms of $\mathbb C^2$ and persistence of heteroclinic intersections”, Invent. Math., 161:1 (2005), 45–89 | DOI | MR | Zbl
[5] I. Gorbovitskii, Netipichnost gomoklinicheskikh kasanii dlya polinomialnykh avtomorfizmov $\mathbb C^2$, sokhranyayuschikh ob'em, Diplomnaya rabota, MGU, 2006
[6] I. R. Shafarevich, Basic algebraic geometry, v. I, Springer-Verlag, New York–Heidelberg, 1994 | MR | MR | Zbl | Zbl
[7] J. S. Milne, Algebraic geometry, http://www.jmilne.org/math/CourseNotes/ag.html
[8] Y. Yomdin, “Singularities in algebraic data acquisition”, Real and complex singularities (Sao Carlos, Brazil, 2008), London Math. Soc. Lecture Note Ser., 380, Cambridge Univ. Press, Cambridge, 2010, 378–396 | MR | Zbl
[9] I. G. Macdonald, Symmetric functions and Hall polynomials, Clarendon Press, Oxford, 1979 | MR | Zbl
[10] J. Milnor, “Geometry and dynamics of quadratic rational maps”, Experiment. Math., 2:1 (1993), 37–83 | DOI | MR | Zbl