Combinatorics associated with inflections and bitangents of plane quartics
Izvestiya. Mathematics , Tome 77 (2013) no. 4, pp. 675-695
Voir la notice de l'article provenant de la source Math-Net.Ru
After a preliminary survey and a description of some small Steiner systems
from the standpoint of the theory of invariants of binary forms, we
construct a binary Golay code (of length 24) using ideas from J. Grassmann's
thesis of 1875. One of our tools is a pair of disjoint Fano planes.
Another application of such pairs and properties of plane quartics
is a construction of a new block design on 28 objects. This block design is
a part of a dissection of the set of 288 Aronhold sevens. The dissection
distributes the Aronhold sevens into 8 disjoint block designs of this type.
Keywords:
binary form, point of inflection, plane quartic,
Aronhold seven, block design, Fano plane, Steiner system, Golay code.
Mots-clés : invariant, bitangent
Mots-clés : invariant, bitangent
@article{IM2_2013_77_4_a2,
author = {M. Kh. Gizatullin},
title = {Combinatorics associated with inflections and bitangents of plane quartics},
journal = {Izvestiya. Mathematics },
pages = {675--695},
publisher = {mathdoc},
volume = {77},
number = {4},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a2/}
}
M. Kh. Gizatullin. Combinatorics associated with inflections and bitangents of plane quartics. Izvestiya. Mathematics , Tome 77 (2013) no. 4, pp. 675-695. http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a2/