Operations on $t$-structures and perverse coherent sheaves
Izvestiya. Mathematics , Tome 77 (2013) no. 4, pp. 651-674.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notions of consistent pairs and consistent chains of $t$-structures and prove that two consistent chains of $t$-structures generate a distributive lattice. The technique developed is then applied to the pairs of chains obtained from the standard $t$-structure on the derived category of coherent sheaves and the dual $t$-structure by means of the shift functor. This yields a family of $t$-structures whose hearts are known as perverse coherent sheaves.
Keywords: derived categories of coherent sheaves, perverse sheaves
Mots-clés : $t$-structures.
@article{IM2_2013_77_4_a1,
     author = {A. I. Bondal},
     title = {Operations on $t$-structures and perverse coherent sheaves},
     journal = {Izvestiya. Mathematics },
     pages = {651--674},
     publisher = {mathdoc},
     volume = {77},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a1/}
}
TY  - JOUR
AU  - A. I. Bondal
TI  - Operations on $t$-structures and perverse coherent sheaves
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 651
EP  - 674
VL  - 77
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a1/
LA  - en
ID  - IM2_2013_77_4_a1
ER  - 
%0 Journal Article
%A A. I. Bondal
%T Operations on $t$-structures and perverse coherent sheaves
%J Izvestiya. Mathematics 
%D 2013
%P 651-674
%V 77
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a1/
%G en
%F IM2_2013_77_4_a1
A. I. Bondal. Operations on $t$-structures and perverse coherent sheaves. Izvestiya. Mathematics , Tome 77 (2013) no. 4, pp. 651-674. http://geodesic.mathdoc.fr/item/IM2_2013_77_4_a1/

[1] G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. Publ., 25, Amer. Math. Soc., New York, 1948 | MR | MR | Zbl | Zbl

[2] R. Bezrukavnikov, Perverse coherent sheaves (after Deligne), arXiv: math/0005152

[3] M. Kashiwara, “$t$-structures on the derived categories of holonomic $\mathscr D$-modules and coherent $\mathscr O$-modules”, Mosc. Math. J., 4:4 (2004), 847–868 | MR | Zbl

[4] O. Gabber, “Notes on some $t$-structures”, Geometric aspects of Dwork theory, v. I, II, de Gruyter, Berlin, 2004, 711–734 | MR | Zbl

[5] A. Bondal, D. Orlov, Semiorthogonal decomposition for algebraic varieties, arXiv: alg-geom/9506012

[6] T. Bridgeland, “Flops and derived categories”, Invent. Math., 147:3 (2002), 613–632 | DOI | MR | Zbl

[7] T. Bridgeland, “Stability conditions on triangulated categories”, Ann. of Math. (2), 166:2 (2007), 317–345 | DOI | MR | Zbl

[8] J.-L. Verdier, “Categories derivees”, Séminaire de Géométrie Algébrique du Bois-Marie SGA $4\frac12$, Lecture Notes in Math., 569, Springer-Verlag, Berlin–New York, 1977, 262–311 | DOI | MR | Zbl

[9] A. A. Beǐlinson, J. Bernstein, P. Deligne, “Faisceaux pervers”, Analysis and topology on singular spaces (Luminy, 1981), v. I, Asterisque, 100, Soc. Math. France, Paris, 1983 | MR | Zbl

[10] A. I. Bondal, “Representations of associative algebras and coherent sheaves”, Math. USSR Izv., 34:1 (1990), 23–42 | DOI | MR | Zbl

[11] J.-L. Verdier, “Base change for twisted inverse image of coherent sheaves”, Algebraic geometry (Bombay, 1968), Oxford Univ. Press, London, 1969, 393–408 | MR | Zbl

[12] J. Lipman, M. Hashimoto, Foundations of Grothendieck duality for diagrams of schemes, Lecture Notes in Math., 1960, Springer-Verlag, Berlin, 2009 | DOI | MR | Zbl

[13] R. Hartshorne, Residues and duality, Lect. Notes in Math., 20, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | DOI | MR | Zbl

[14] C. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces, Progr. Math., 3, Birkhäuser, Boston, MA, 1980 | MR | MR | Zbl | Zbl