Homotopy groups as centres of finitely presented groups
Izvestiya. Mathematics , Tome 77 (2013) no. 3, pp. 581-593.

Voir la notice de l'article provenant de la source Math-Net.Ru

For every finite Abelian group $A$ and integer $n\geqslant 3$ we construct a finitely presented group defined by explicit generators and relations such that its centre is isomorphic to $\pi_n(\Sigma K(A,1))$.
Keywords: homotopy theory, homotopy groups, simplicial groups, finitely presented groups.
@article{IM2_2013_77_3_a8,
     author = {J. Wu and R. V. Mikhailov},
     title = {Homotopy groups as centres of finitely presented groups},
     journal = {Izvestiya. Mathematics },
     pages = {581--593},
     publisher = {mathdoc},
     volume = {77},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a8/}
}
TY  - JOUR
AU  - J. Wu
AU  - R. V. Mikhailov
TI  - Homotopy groups as centres of finitely presented groups
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 581
EP  - 593
VL  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a8/
LA  - en
ID  - IM2_2013_77_3_a8
ER  - 
%0 Journal Article
%A J. Wu
%A R. V. Mikhailov
%T Homotopy groups as centres of finitely presented groups
%J Izvestiya. Mathematics 
%D 2013
%P 581-593
%V 77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a8/
%G en
%F IM2_2013_77_3_a8
J. Wu; R. V. Mikhailov. Homotopy groups as centres of finitely presented groups. Izvestiya. Mathematics , Tome 77 (2013) no. 3, pp. 581-593. http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a8/

[1] J. Wu, “Combinatorial descriptions of homotopy groups of certain spaces”, Math. Proc. Cambridge Philos. Soc., 130:3 (2001), 489–513 | DOI | MR | Zbl

[2] G. Ellis, R. Mikhailov, “A colimit of classifying spaces”, Adv. Math., 223:6 (2010), 2097–2113 | DOI | MR | Zbl

[3] R. Mikhailov, I. B. S. Passi, J. Wu, “Symmetric ideals in group rings and simplicial homotopy”, J. Pure Appl. Algebra, 215:5 (2011), 1085–1092 | DOI | MR | Zbl

[4] J. Y. Li, J. Wu, “Artin braid groups and homotopy groups”, Proc. Lond. Math. Soc. (3), 99:3 (2009), 521–556 | DOI | MR | Zbl

[5] J. Y. Li, J. Wu, “On symmetric commutator subgroups, braids, links and homotopy groups”, Trans. Amer. Math. Soc., 363:7 (2011), 3829–3852 | DOI | MR | Zbl

[6] R. Mikhailov, J. Wu, “A combinatorial description of homotopy groups of spheres”, Geom. Topol. (to appear)

[7] D. M. Kan, “A combinatorial definition of homotopy groups”, Ann. of Math. (2), 67:2 (1958), 282–312 | DOI | MR | Zbl

[8] D. M. Kan, “On homotopy theory and c.s.s. groups”, Ann. of Math. (2), 68:1 (1958), 38–53 | DOI | MR | Zbl

[9] A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector, J. W. Schesinger, “The mod-p lower central series and the Adams spectral sequence”, Topology, 5 (1966), 331–342 | DOI | MR | Zbl

[10] J. Milnor, “On the construction $F[K]$”, Algebraic topology. A student's guide, Cambridge Univ. Press, London, 1972, 119–136 | MR | Zbl

[11] V. G. Bardakov, R. Mikhailov, V. V. Vershinin, J. Wu, “Brunnian braids on surfaces”, Alg. Geom. Top., 12:3 (2012), 1607–1648 | DOI | Zbl

[12] J. A. Berrick, F. R. Cohen, Y. L. Wong, J. Wu, “Configurations, braids, and homotopy groups”, J. Amer. Math. Soc., 19:2 (2006), 265–326 | DOI | MR | Zbl

[13] J. A. Berrick, L. Hanbury, J. Wu, “Delta-structures on mapping class groups and braid groups”, Trans. Amer. Math. Soc. (to appear)

[14] F. R. Cohen, J. Wu, “On braid groups, free groups, and the loop space of the 2-sphere”, Categorical decomposition techniques in algebraic topology (Isle of Skye, UK, 2001), Progr. Math., 215, Birkhäuser, Basel, 2004, 93–105 | MR | Zbl

[15] F. Cohen, J. Wu, “Artin's braid groups, free groups, and the loop space of the 2-sphere”, Q. J. Math., 62:4 (2011), 891–921 | DOI | MR | Zbl

[16] F. Lei, F. Li, J. Wu, On simplicial resolutions of framed links

[17] J. Wu, “A braided simplicial group”, Proc. London Math. Soc. (3), 84:3 (2002), 645–662 | DOI | MR | Zbl

[18] R. Brown, J.-L. Loday, “Van Kampen theorems for diagrams of spaces”, Topology, 26:3 (1987), 311–335 | DOI | MR | Zbl

[19] R. Mikhailov, J. Wu, “On homotopy groups of the suspended classifying spaces”, Algebr. Geom. Topol., 10:1 (2010), 565–625 | DOI | MR | Zbl

[20] A. Romero, J. Rubio, “Homotopy groups of suspended classifying spaces: an experimental approach”, Math. Comp., 2012 (to appear)

[21] J. H. C. Whitehead, “On the asphericity of regions in a 3-sphere”, Fund. Math., 32 (1939), 149–166 | Zbl

[22] D. M. Kan, W. P. Thurston, “Every connected space has the homology of a $K(\pi,1)$”, Topology, 15 (1976), 253–258 | DOI | MR | Zbl

[23] E. B. Curtis, “Some relations between homotopy and homology”, Ann. of Math. (2), 82:3 (1965), 386–413 | DOI | MR | Zbl

[24] W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publ., New York–London–Sydney, 1966 | MR | Zbl

[25] G. Carlsson, “A simplicial group construction for balanced products”, Topology, 23 (1984), 85–89 | DOI | MR | Zbl

[26] D. G. Quillen, Homotopical algebra, Lect. Notes in Math., 43, Springer-Verlag, Berlin, 1967 | MR | Zbl

[27] E. Fadell, L. Neuwirth, “Configuration spaces”, Math. Scand., 10 (1962), 111–118 | MR | Zbl