Homotopy groups as centres of finitely presented groups
Izvestiya. Mathematics , Tome 77 (2013) no. 3, pp. 581-593

Voir la notice de l'article provenant de la source Math-Net.Ru

For every finite Abelian group $A$ and integer $n\geqslant 3$ we construct a finitely presented group defined by explicit generators and relations such that its centre is isomorphic to $\pi_n(\Sigma K(A,1))$.
Keywords: homotopy theory, homotopy groups, simplicial groups, finitely presented groups.
@article{IM2_2013_77_3_a8,
     author = {J. Wu and R. V. Mikhailov},
     title = {Homotopy groups as centres of finitely presented groups},
     journal = {Izvestiya. Mathematics },
     pages = {581--593},
     publisher = {mathdoc},
     volume = {77},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a8/}
}
TY  - JOUR
AU  - J. Wu
AU  - R. V. Mikhailov
TI  - Homotopy groups as centres of finitely presented groups
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 581
EP  - 593
VL  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a8/
LA  - en
ID  - IM2_2013_77_3_a8
ER  - 
%0 Journal Article
%A J. Wu
%A R. V. Mikhailov
%T Homotopy groups as centres of finitely presented groups
%J Izvestiya. Mathematics 
%D 2013
%P 581-593
%V 77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a8/
%G en
%F IM2_2013_77_3_a8
J. Wu; R. V. Mikhailov. Homotopy groups as centres of finitely presented groups. Izvestiya. Mathematics , Tome 77 (2013) no. 3, pp. 581-593. http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a8/