Elliptic fibrations of maximal rank on a~supersingular K3 surface
Izvestiya. Mathematics , Tome 77 (2013) no. 3, pp. 571-580

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a class of elliptic $\mathrm{K3}$ surfaces defined by an explicit Weierstrass equation to find elliptic fibrations of maximal rank on $\mathrm{K3}$ surface in positive characteristic. In particular, we show that the supersingular $\mathrm{K3}$ surface of Artin invariant 1 (unique by Ogus) admits at least one elliptic fibration with maximal rank 20 in every characteristic $p>7$, $p\ne 13$, and further that the number, say $N(p)$, of such elliptic fibrations (up to isomorphisms), is unbounded as $p\to\infty$; in fact, we prove that $\lim_{p\to\infty} N(p)/p^{2} \geqslant (1/12)^{2}$. Bibliography: 19 titles.
Keywords: $\mathrm{K3}$ surface, Mordell–Weil lattice
Mots-clés : Artin invariant.
@article{IM2_2013_77_3_a7,
     author = {T. Shioda},
     title = {Elliptic fibrations of maximal rank on a~supersingular {K3} surface},
     journal = {Izvestiya. Mathematics },
     pages = {571--580},
     publisher = {mathdoc},
     volume = {77},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a7/}
}
TY  - JOUR
AU  - T. Shioda
TI  - Elliptic fibrations of maximal rank on a~supersingular K3 surface
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 571
EP  - 580
VL  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a7/
LA  - en
ID  - IM2_2013_77_3_a7
ER  - 
%0 Journal Article
%A T. Shioda
%T Elliptic fibrations of maximal rank on a~supersingular K3 surface
%J Izvestiya. Mathematics 
%D 2013
%P 571-580
%V 77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a7/
%G en
%F IM2_2013_77_3_a7
T. Shioda. Elliptic fibrations of maximal rank on a~supersingular K3 surface. Izvestiya. Mathematics , Tome 77 (2013) no. 3, pp. 571-580. http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a7/