Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds
Izvestiya. Mathematics , Tome 77 (2013) no. 3, pp. 541-570.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a finite-dimensional manifold $N$, the group $\operatorname{Diff}_{\mathcal S}(N)$ of diffeomorphisms diffeomorphism of $N$ which decrease suitably rapidly to the identity, acts on the manifold $B(M,N)$ of submanifolds of $N$ of diffeomorphism-type $M$, where $M$ is a compact manifold with $\operatorname{dim} M\operatorname{dim} N$. Given the right-invariant weak Riemannian metric on $\operatorname{Diff}_{\mathcal S}(N)$ induced by a quite general operator $L\colon \mathfrak X_{\mathcal S}(N)\to \Gamma(T^*N\otimes\operatorname{vol}(N))$, we consider the induced weak Riemannian metric on $B(M,N)$ and compute its geodesics and sectional curvature. To do this, we derive a covariant formula for the curvature in finite and infinite dimensions, we show how it makes O'Neill's formula very transparent, and we finally use it to compute the sectional curvature on $B(M,N)$. Bibliography: 15 titles.
Keywords: robust infinite-dimensional weak Riemannian manifolds, curvature in terms of the cometric, right-invariant Sobolev metrics on diffeomorphism groups, manifold of submanifolds.
Mots-clés : O'Neill's formula
@article{IM2_2013_77_3_a6,
     author = {M. Micheli and P. W. Michor and D. Mumford},
     title = {Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds},
     journal = {Izvestiya. Mathematics },
     pages = {541--570},
     publisher = {mathdoc},
     volume = {77},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a6/}
}
TY  - JOUR
AU  - M. Micheli
AU  - P. W. Michor
AU  - D. Mumford
TI  - Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 541
EP  - 570
VL  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a6/
LA  - en
ID  - IM2_2013_77_3_a6
ER  - 
%0 Journal Article
%A M. Micheli
%A P. W. Michor
%A D. Mumford
%T Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds
%J Izvestiya. Mathematics 
%D 2013
%P 541-570
%V 77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a6/
%G en
%F IM2_2013_77_3_a6
M. Micheli; P. W. Michor; D. Mumford. Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds. Izvestiya. Mathematics , Tome 77 (2013) no. 3, pp. 541-570. http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a6/

[1] V. I. Arnold, “Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits”, Ann. Inst. Fourier (Grenoble), 16:1 (1966), 319–361 | DOI | MR | Zbl

[2] P. W. Michor and D. Mumford, “An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach”, Appl. Comput. Harmon. Anal., 23:1 (2007), 74–113 | DOI | MR | Zbl

[3] P. W. Michor, “Some geometric evolution equations arising as geodesic equations on groups of diffeomorphisms including the Hamiltonian approach”, Phase space analysis of partial differential equations, Progr. Nonlinear Differential Equations Appl., 69, Birkhäuser, Boston, MA, 2006, 133–215 | MR | Zbl

[4] M. Micheli, P. W. Michor, and D. B. Mumford, “Sectional curvature in terms of the cometric, with applications to the Riemannian manifolds of landmarks”, SIAM J. Imaging Sci., 5:1 (2012), 394–433 | DOI | MR | Zbl

[5] S. Kushnarev, “Teichons: solitonlike geodesics on universal Teichmüller space”, Experiment. Math., 18:3 (2009), 325–336 | DOI | MR | Zbl

[6] P. W. Michor and D. B. Mumford, “Riemannian geometries on spaces of plane curves”, J. Eur. Math. Soc. (JEMS), 8:1 (2006), 1–48 | DOI | MR | Zbl

[7] E. Sharon and D. Mumford, “2D-shape analysis using conformal mapping”, Int. J. Comput. Vis., 70:1 (2006), 55–75 | DOI

[8] M. I. Miller, A. Trouvé, and L. Younes, “On the metrics and Euler–Lagrange equations of computational anatomy”, Annual Review of Biomedical Engineering, 4 (2002), 375–405 | DOI

[9] S. Zhang, L. Younes, J. Zweck, and J. T. Ratnanather, “Diffeomorphic surface flows: a novel method of surface evolution”, SIAM J. Appl. Math., 68:3 (2008), 806–824 | DOI | MR | Zbl

[10] A. Kriegl and P. W. Michor, The convenient setting of global analysis, Math. Surveys Monogr., 53, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl

[11] M. Bauer, M. Bruveris, and P. W. Michor, The homogeneous Sobolev metric of order one on diffeomorphism groups on the real line, arXiv: 1209.2836

[12] L. Younes, P. W. Michor, J. M. Shah, and D. B. Mumford, “A metric on shape space with explicit geodesics”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 19:1 (2008), 25–57 | DOI | MR | Zbl

[13] J. Eichhorn, Global analysis on open manifolds, Nova Science Publ., New York, 2007 | MR | Zbl

[14] L. Younes, Shapes and diffeomorphisms, Appl. Math. Sci., 171, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl

[15] A. Frölicher and A. Kriegl, Linear spaces and differentiation theory, Pure Appl. Math. (N.Y.), Wiley-Interscience, Chichester, 1988 | MR | Zbl