Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds
Izvestiya. Mathematics , Tome 77 (2013) no. 3, pp. 541-570

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a finite-dimensional manifold $N$, the group $\operatorname{Diff}_{\mathcal S}(N)$ of diffeomorphisms diffeomorphism of $N$ which decrease suitably rapidly to the identity, acts on the manifold $B(M,N)$ of submanifolds of $N$ of diffeomorphism-type $M$, where $M$ is a compact manifold with $\operatorname{dim} M\operatorname{dim} N$. Given the right-invariant weak Riemannian metric on $\operatorname{Diff}_{\mathcal S}(N)$ induced by a quite general operator $L\colon \mathfrak X_{\mathcal S}(N)\to \Gamma(T^*N\otimes\operatorname{vol}(N))$, we consider the induced weak Riemannian metric on $B(M,N)$ and compute its geodesics and sectional curvature. To do this, we derive a covariant formula for the curvature in finite and infinite dimensions, we show how it makes O'Neill's formula very transparent, and we finally use it to compute the sectional curvature on $B(M,N)$. Bibliography: 15 titles.
Keywords: robust infinite-dimensional weak Riemannian manifolds, curvature in terms of the cometric, right-invariant Sobolev metrics on diffeomorphism groups, manifold of submanifolds.
Mots-clés : O'Neill's formula
@article{IM2_2013_77_3_a6,
     author = {M. Micheli and P. W. Michor and D. Mumford},
     title = {Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds},
     journal = {Izvestiya. Mathematics },
     pages = {541--570},
     publisher = {mathdoc},
     volume = {77},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a6/}
}
TY  - JOUR
AU  - M. Micheli
AU  - P. W. Michor
AU  - D. Mumford
TI  - Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 541
EP  - 570
VL  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a6/
LA  - en
ID  - IM2_2013_77_3_a6
ER  - 
%0 Journal Article
%A M. Micheli
%A P. W. Michor
%A D. Mumford
%T Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds
%J Izvestiya. Mathematics 
%D 2013
%P 541-570
%V 77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a6/
%G en
%F IM2_2013_77_3_a6
M. Micheli; P. W. Michor; D. Mumford. Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds. Izvestiya. Mathematics , Tome 77 (2013) no. 3, pp. 541-570. http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a6/