Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2013_77_3_a6, author = {M. Micheli and P. W. Michor and D. Mumford}, title = {Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds}, journal = {Izvestiya. Mathematics }, pages = {541--570}, publisher = {mathdoc}, volume = {77}, number = {3}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a6/} }
TY - JOUR AU - M. Micheli AU - P. W. Michor AU - D. Mumford TI - Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds JO - Izvestiya. Mathematics PY - 2013 SP - 541 EP - 570 VL - 77 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a6/ LA - en ID - IM2_2013_77_3_a6 ER -
%0 Journal Article %A M. Micheli %A P. W. Michor %A D. Mumford %T Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds %J Izvestiya. Mathematics %D 2013 %P 541-570 %V 77 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a6/ %G en %F IM2_2013_77_3_a6
M. Micheli; P. W. Michor; D. Mumford. Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds. Izvestiya. Mathematics , Tome 77 (2013) no. 3, pp. 541-570. http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a6/
[1] V. I. Arnold, “Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits”, Ann. Inst. Fourier (Grenoble), 16:1 (1966), 319–361 | DOI | MR | Zbl
[2] P. W. Michor and D. Mumford, “An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach”, Appl. Comput. Harmon. Anal., 23:1 (2007), 74–113 | DOI | MR | Zbl
[3] P. W. Michor, “Some geometric evolution equations arising as geodesic equations on groups of diffeomorphisms including the Hamiltonian approach”, Phase space analysis of partial differential equations, Progr. Nonlinear Differential Equations Appl., 69, Birkhäuser, Boston, MA, 2006, 133–215 | MR | Zbl
[4] M. Micheli, P. W. Michor, and D. B. Mumford, “Sectional curvature in terms of the cometric, with applications to the Riemannian manifolds of landmarks”, SIAM J. Imaging Sci., 5:1 (2012), 394–433 | DOI | MR | Zbl
[5] S. Kushnarev, “Teichons: solitonlike geodesics on universal Teichmüller space”, Experiment. Math., 18:3 (2009), 325–336 | DOI | MR | Zbl
[6] P. W. Michor and D. B. Mumford, “Riemannian geometries on spaces of plane curves”, J. Eur. Math. Soc. (JEMS), 8:1 (2006), 1–48 | DOI | MR | Zbl
[7] E. Sharon and D. Mumford, “2D-shape analysis using conformal mapping”, Int. J. Comput. Vis., 70:1 (2006), 55–75 | DOI
[8] M. I. Miller, A. Trouvé, and L. Younes, “On the metrics and Euler–Lagrange equations of computational anatomy”, Annual Review of Biomedical Engineering, 4 (2002), 375–405 | DOI
[9] S. Zhang, L. Younes, J. Zweck, and J. T. Ratnanather, “Diffeomorphic surface flows: a novel method of surface evolution”, SIAM J. Appl. Math., 68:3 (2008), 806–824 | DOI | MR | Zbl
[10] A. Kriegl and P. W. Michor, The convenient setting of global analysis, Math. Surveys Monogr., 53, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl
[11] M. Bauer, M. Bruveris, and P. W. Michor, The homogeneous Sobolev metric of order one on diffeomorphism groups on the real line, arXiv: 1209.2836
[12] L. Younes, P. W. Michor, J. M. Shah, and D. B. Mumford, “A metric on shape space with explicit geodesics”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 19:1 (2008), 25–57 | DOI | MR | Zbl
[13] J. Eichhorn, Global analysis on open manifolds, Nova Science Publ., New York, 2007 | MR | Zbl
[14] L. Younes, Shapes and diffeomorphisms, Appl. Math. Sci., 171, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[15] A. Frölicher and A. Kriegl, Linear spaces and differentiation theory, Pure Appl. Math. (N.Y.), Wiley-Interscience, Chichester, 1988 | MR | Zbl