Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2013_77_3_a3, author = {C. Diemer and L. Katzarkov and G. Kerr}, title = {Compactifications of spaces of {Landau--Ginzburg} models}, journal = {Izvestiya. Mathematics }, pages = {487--508}, publisher = {mathdoc}, volume = {77}, number = {3}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a3/} }
C. Diemer; L. Katzarkov; G. Kerr. Compactifications of spaces of Landau--Ginzburg models. Izvestiya. Mathematics , Tome 77 (2013) no. 3, pp. 487-508. http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a3/
[1] D. Auroux, “Mirror symmetry and $T$-duality in the complement of an anticanonical divisor”, J. Gökova Geom. Topol. GGT, 1 (2007), 51–91 | MR | Zbl
[2] K. Hori and C. Vafa, Mirror symmetry, 2000, arXiv: hep-th/0002222
[3] F. Haiden, L. Katzarkov, and M. Kontsevich, “Mod of stability conditions for FS categories”, 2013 (to appear)
[4] A. Iliev, L. Katzarkov, and E. Scheidegger, “Automorphic forms and gaps”, 2013 (to appear)
[5] L. Katzarkov, M. Kontsevich, T. Pantev, and Y. Soibelman, “Stability Hodge structures”, 2013 (to appear)
[6] V. Przyjalkowski, “Birational geometry and LG models”, 2013 (to appear)
[7] C. Diemer, L. Katzarkov, and G. Kerr, Symplectomorphism group relations and degenerations of Landau–Ginzburg models, 2012, arXiv: 1204.2233
[8] G. Kerr, “Weighted blowups and mirror symmetry for toric surfaces”, Adv. Math., 219:1 (2008), 199–250 | DOI | MR | Zbl
[9] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Birkhäuser, Boston, MA, 2008 | MR | Zbl
[10] L. Lafforgue, “Chirurgie des grassmanniennes”, CRM Monogr. Ser., 19, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl
[11] M. Blume, Toric orbifolds associated to Cartan matrices, arXiv: 1110.2761
[12] A.-S. Kaloghiros, Relations in the Sarkisov program, arXiv: 1203.3767
[13] L. A. Borisov, L. Chen, and G. G. Smith, “The orbifold Chow ring of toric Deligne–Mumford stacks”, J. Amer. Math. Soc., 18:1 (2005), 193–215 | DOI | MR | Zbl
[14] D. A. Cox, “The homogeneous coordinate ring of a toric variety”, J. Algebraic Geom., 4:1 (1995), 17–50 | MR | Zbl
[15] P. Hacking, Compact moduli of hyperplane arrangements, arXiv: math/0310479
[16] Q. Chen and S. Matthew, Chow quotients of toric varieties as moduli of stable log maps, arXiv: 1201.3406
[17] L. J. Billera and B. Sturmfels, “Iterated fiber polytopes”, Mathematika, 41:2 (1994), 348–363 | DOI | MR
[18] L. J. Billera and B. Sturmfels, “Fiber polytopes”, Ann. of Math. (2), 135:3 (1992), 527–549 | DOI | MR | Zbl
[19] P. Seidel, Fukaya categories and Picard–Lefschetz theory, Zur. Lect. Adv. Math., European Math. Soc., Zürich, 2008 | MR | Zbl
[20] P. Seidel, “Vanishing cycles and mutation”, 3rd European congress of mathematics, vol. II (Barcelona, Spain 2000), Progr. Math., 202, Birkhäuser, Basel, 2001, 65–85 | MR | Zbl
[21] A. Geraschenko and M. Satriano, Toric stacks I: The theory of stacky fans, arXiv: 1107.1906
[22] L. J. Billera, P. Filliman, and B. Sturmfels, “Constructions and complexity of secondary polytopes”, Adv. Math., 83:2 (1990), 155–179 | DOI | MR | Zbl
[23] P. Diaconis, R. L. Graham, and W. M. Kantor, “The mathematics of perfect shuffles”, Adv. in Appl. Math., 4:2 (1983), 175–196 | DOI | MR | Zbl
[24] P. Gabriel, “Unzerlegbare Darstellungen. I”, Manuscripta Math., 6:1 (1972), 71–103 | DOI | MR | Zbl
[25] L. Katzarkov, “Birational geometry and homological mirror symmetry”, Real and complex singularities (University of Sydney, Australia 2005), World Scientific, Hackensack, NJ, 2007, 176–206 | MR | Zbl
[26] C. D. Hacon and J. McKernan, The Sarkisov program, arXiv: 0905.0946
[27] Yu. I. Manin, “Cubic forms. Algebra, geometry, arithmetic”, North-Holland Math. Library, 4, North-Holland, Amsterdam, 1986 | MR | Zbl
[28] D. Auroux, L. Katzarkov, and D. Orlov, “Mirror symmetry for Del Pezzo surfaces: Vanishing cycles and coherent sheaves”, Invent. Math., 166:3 (2006), 537–582 | DOI | MR | Zbl
[29] G. Heckman and E. Looijenga, “The moduli space of rational elliptic surfaces”, Algebraic geometry (Nagano, Japan 2000), Adv. Stud. Pure Math., 36, Math. Soc. Japan, Tokyo, 2002, 185-248 | MR | Zbl
[30] S. Donaldson, Stability, birational transformations and the Kähler–Einstein problem, arXiv: 1007.4220