Ice cream and orbifold Riemann--Roch
Izvestiya. Mathematics , Tome 77 (2013) no. 3, pp. 461-486

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an orbifold Riemann–Roch formula in closed form for the Hilbert series of a quasismooth polarized $n$-fold $(X,D)$, under the assumption that $X$ is projectively Gorenstein with only isolated orbifold points. Our formula is a sum of parts each of which is integral and Gorenstein symmetric of the same canonical weight; the orbifold parts are called ice cream functions. This form of the Hilbert series is particularly useful for computer algebra, and we illustrate it on examples of $\mathrm{K3}$ surfaces and Calabi–Yau 3-folds. These results apply also with higher dimensional orbifold strata (see [1] and [2]), although the precise statements are considerably trickier. We expect to return to this in future publications. Bibliography: 22 titles.
Keywords: orbifold, orbifold Riemann–Roch, Dedekind sum, Hilbert series, weighted projective varieties.
@article{IM2_2013_77_3_a2,
     author = {A. Buckley and M. Reid and S. Zhou},
     title = {Ice cream and orbifold {Riemann--Roch}},
     journal = {Izvestiya. Mathematics },
     pages = {461--486},
     publisher = {mathdoc},
     volume = {77},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a2/}
}
TY  - JOUR
AU  - A. Buckley
AU  - M. Reid
AU  - S. Zhou
TI  - Ice cream and orbifold Riemann--Roch
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 461
EP  - 486
VL  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a2/
LA  - en
ID  - IM2_2013_77_3_a2
ER  - 
%0 Journal Article
%A A. Buckley
%A M. Reid
%A S. Zhou
%T Ice cream and orbifold Riemann--Roch
%J Izvestiya. Mathematics 
%D 2013
%P 461-486
%V 77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a2/
%G en
%F IM2_2013_77_3_a2
A. Buckley; M. Reid; S. Zhou. Ice cream and orbifold Riemann--Roch. Izvestiya. Mathematics , Tome 77 (2013) no. 3, pp. 461-486. http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a2/